www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Automorphismengruppe endl. Kör
Automorphismengruppe endl. Kör < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Automorphismengruppe endl. Kör: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:06 So 18.11.2012
Autor: Kaffeetrinker

Aufgabe
Sei F/E eine Erweiterung endlicher Körper. Bestimmen Sie [mm] Aut_{F}(E). [/mm]


Ich habe leider keinen Ansatz für diese Aufgabe.
[mm] Aut_{E}(F) [/mm] ist die Automorphismengruppe, d. h. die Menge aller Abbildungen [mm] \sigma:F\rightarrow [/mm] F, die auf E eingeschränkt die Identität sind. Wie gehe ich da vor? Ich weiß nur, dass die Identität natürlich in dieser Menge liegt, da die Aufgabe sehr allgemein gestellt ist, denke ich, dass eine einfache Lösung wie "nur die Identität ist in [mm] Aut_{E}(F) [/mm] enthalten" rauskommt.
Allerdings habe ich keine Idee. Gibt es einen Zusammenhang zum Frobeniushomomorphismus? Ich bitte euch um Hilfe!

Danke und lg
Kaffeetrinker




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Automorphismengruppe endl. Kör: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:33 So 18.11.2012
Autor: teo

Hallo,

da hast du jetzt entweder in der Aufgabenstellung oder in deinem Text F und E vertauscht... Grundsätzlich aber hast du recht, dass das einfach alle Automorphismen [mm] $\phi: [/mm] E [mm] \to [/mm] E$, die eingeschränkt auf F die idententität sind. Ich weiß nicht, was man da noch für Aussagen treffen kann, wenn sonst nix über die Körper bekannt ist...

Bezug
                
Bezug
Automorphismengruppe endl. Kör: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:38 So 18.11.2012
Autor: Kaffeetrinker

Sorry und danke für den Hinweis. Hab es oben korrigiert.

Bezug
        
Bezug
Automorphismengruppe endl. Kör: Antwort
Status: (Antwort) fertig Status 
Datum: 09:02 Mo 19.11.2012
Autor: hippias

Ja, das Problem hat etwas mit dem Frobeniusautmorphismus zu tun. Aber der Reihe nach: Ein Automorphismus der Koerpererweiterung induziert einen Automorphismus der multiplikative Gruppe des Koerpers. Da dieser endliche ist, hat sie eine ganz bestimmte Struktur, die ihrerseits die Moeglichkeiten fuer Automorphismen stark einschraenkt.
Ferner induziert ein Koerperautomorphismus einen Automorphismus seiner additiven Gruppe, was weitere Einschraenkungen nach sich zieht. Dies zusammen sollte zur Loesung des Problems fuehren.  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de