www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Automorphismus
Automorphismus < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Automorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 Do 18.04.2013
Autor: meister_quitte

Aufgabe 1
Geben Sie die Automorphismusgruppen der zyklischen Gruppen [mm] $Z_5$, $Z_6$ [/mm] und [mm] $Z_9$. [/mm]

Aufgabe 2
Bestimmen Sie die Automorphismusgruppen der [mm] $V_4$ [/mm] und der [mm] $S_3$. [/mm]

Hallo Leute,

bezüglich dem Angeben von Automorphismusgruppen bin ich mir noch unsicher. Bitte meldet euch doch, falls ich was fundamental falsches angebe.

Hier mein Ansatz:

zu 1)

[mm] $Z_5:=\{a, a^2, a^3,a^4, a^5=e\}$ [/mm]
[mm] $\Rightarrow [/mm] ord(a)=5, [mm] ord(a^2)=5, ord(a^3)=5,ord(a^4)=5 ord(a^5)=1$ [/mm]
[mm] $G_{Aut}:=\{\phi_1=a\toa, a\to a^2\, a\to a^3, a\to a^4, a^5 \to a^5; \phi_2=a^2\to a\, a^2\to a^2, a\to a^3,a^2\to a^4,a^5 \to a^5; \phi_3=a^3\to a, a^3\to a^2\, a^3\to a^3, a^3\to a^4, a^5 \to a^5; \phi_4=a^4\toa, a^4\to a^2\, a^4\to a^3, a^4\to a^4, a^5 \to a^5;\}. [/mm]

Falls dies so stimmt, gilt das Schema dann auch bei anderen Gruppen?

Liebe Grüße

Christoph

        
Bezug
Automorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Do 18.04.2013
Autor: Schadowmaster

moin,

zuerst wäre es nett, wenn du kurz erklären könntest, was genau du mit deinen Abbildungen meinst. Was genau soll [mm] $\phi_1$ [/mm] sein, was soll es mit $a$ machen?
Mit der Vorschaufunktion kannst du überprüfen, ob dein Beitrag so aussieht, wie er gerne aussehen sollte.

Dann zur allgemeinen Überlegung:
Du suchst Automorphismen, nicht irgendwelche Abbildungen.
Automorphismen haben einige ganz spezielle Eigenschaften; weißt du, welche das sind?
Wenn du das hast, dann kannst du begründen, dass es genau $4$ Automorphismen der [mm] $C_5$ [/mm] (wolltest du [mm] $\IZ_5$ [/mm] schreiben?) gibt; vielleicht sind das sogar die, die du aufgezählt hast, aber das lässt sich in der Form nicht so gut erkennen.
Wenn du sie explizit finden willst überlege dir, wieso jeder Homomorphismus [mm] $\phi$ [/mm] von [mm] $C_5$ [/mm] in sicher selber bereits durch [mm] $\phi(a)$ [/mm] eindeutig bestimmt ist.


lg

Schadow

Bezug
                
Bezug
Automorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 Do 18.04.2013
Autor: meister_quitte

Hallo schadow,
> moin,
>  
> zuerst wäre es nett, wenn du kurz erklären könntest, was
> genau du mit deinen Abbildungen meinst. Was genau soll
> [mm]\phi_1[/mm] sein, was soll es mit [mm]a[/mm] machen?
>  Mit der Vorschaufunktion kannst du überprüfen, ob dein
> Beitrag so aussieht, wie er gerne aussehen sollte.

Nach der Regel zur Automorphismusbildung bildet a auf ein Element mit selbiger Ordnung ab. Ich bin auch 4 Phis (Elemente der Automorphismusgruppe) gekommen.

Ja ich gebe zu es ist mir von der Übersicht her nicht so toll gelungen.  

> Dann zur allgemeinen Überlegung:
>  Du suchst Automorphismen, nicht irgendwelche Abbildungen.
>  Automorphismen haben einige ganz spezielle Eigenschaften;
> weißt du, welche das sind?

Automorphismen sind bijektive Endomorphismen. Also bijektive Homomorphismen in sich selbst abgebildet.

>  Wenn du das hast, dann kannst du begründen, dass es genau
> [mm]4[/mm] Automorphismen der [mm]C_5[/mm] (wolltest du [mm]\IZ_5[/mm] schreiben?)

Nein. steht so auf dm Übungsblatt.

> gibt; vielleicht sind das sogar die, die du aufgezählt
> hast, aber das lässt sich in der Form nicht so gut
> erkennen.
>  Wenn du sie explizit finden willst überlege dir, wieso
> jeder Homomorphismus [mm]\phi[/mm] von [mm]C_5[/mm] in sicher selber bereits
> durch [mm]\phi(a)[/mm] eindeutig bestimmt ist.

Sorry aber die Notation [mm] $C_5$ [/mm] ist mir fremd.

>  
>
> lg
>  
> Schadow

Liebe Grüße

Christoph


Bezug
                        
Bezug
Automorphismus: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:35 Do 18.04.2013
Autor: meister_quitte

Hallo,

Wie kann ich denn jetzt am besten meine Automorphismusgruppe erstellen?

Liebe Grüße

Christoph

Bezug
                                
Bezug
Automorphismus: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Sa 20.04.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de