www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Bahngeschwindigkeit in 3D
Bahngeschwindigkeit in 3D < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bahngeschwindigkeit in 3D: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 So 11.11.2012
Autor: happyhippo213

Aufgabe
Ein Teilchen mit der Anfangsgeschwindigkeit:
[mm] \vec{v}(0)= \vektor{0 \\ wR \\ 0} [/mm]  mit w,R > 0
startet am Punkt:
[mm] \vec{x}(0)= \vektor{R \\ 0 \\ 0} [/mm]
und erfahre die Beschleunigung:
[mm] \vec{a}(t)= [/mm] - [mm] \vektor{w^{2}R *cos(wt) \\ w^{2}R *sin(wt) \\ g} [/mm]   mit g > 0

a) Bestimme die Bahngeschwindigkeit [mm] |\vec{v}(t)| [/mm] sowie die Bahn [mm] \vec{x}(t) [/mm] des Teilchens.

Hi, kann mir bitte jemand erklären, wie man diese Aufgabe lösen kann? :( ich kann damit einfach gar nix anfangen...  
Danke im Voraus.

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)

        
Bezug
Bahngeschwindigkeit in 3D: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 So 11.11.2012
Autor: notinX

Hallo,

> Ein Teilchen mit der Anfangsgeschwindigkeit:
>  [mm]\vec{v}(0)= \vektor{0 \\ wR \\ 0}[/mm]  mit w,R > 0

>  startet am Punkt:
>  [mm]\vec{x}(0)= \vektor{R \\ 0 \\ 0}[/mm]
>  und erfahre die
> Beschleunigung:
>  [mm]\vec{a}(t)=[/mm] - [mm]\vektor{w^{2}R *cos(wt) \\ w^{2}R *sin(wt) \\ g}[/mm]
>   mit g > 0

>  
> a) Bestimme die Bahngeschwindigkeit [mm]|\vec{v}(t)|[/mm] sowie die
> Bahn [mm]\vec{x}(t)[/mm] des Teilchens.
>  Hi, kann mir bitte jemand erklären, wie man diese Aufgabe
> lösen kann? :( ich kann damit einfach gar nix anfangen...  
> Danke im Voraus.

dazu brauchst Du die kinematischen Gleichungen, die wurden doch sicher in der Schule/Vorlesung behandelt. Schau mal nach.

>  
> (Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.)

Gruß,

notinX

Bezug
        
Bezug
Bahngeschwindigkeit in 3D: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 So 11.11.2012
Autor: Richie1401

Hi,

die Bewegung im Raum ist eine Superposition (eine Überlagerung) von eindimensionalen Bewegungen. Du kannst also die Gleichungen auch kompontenweise betrachten. Und das solltest du sogar...

Ich denke der Zusammenhang [mm] \ddot{s}=\dot{v}=a [/mm] ist dir allerdings bekannt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de