www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Banach Alaoglou
Banach Alaoglou < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banach Alaoglou: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:14 Mo 17.06.2013
Autor: marianne88

Wenn ich auf [mm] $L^\infty$ [/mm] die schwache-stern  betrachte, dann weiss ich, dass jeder Ball [mm] $B_n$ [/mm] mit Radius $n$ kompakt ist. Wieso ist aber folgende Teilmenge ebenfalls kompakt?

[mm] $B_n\cap L^\infty_+$ [/mm]

wobei [mm] $L^\infty_+$ [/mm] einfach alle [mm] $f\in L^\infty$ [/mm] sind mit [mm] $f\ge [/mm] 0$. Ich kenne den Satz: Wenn $A$ kompakt ist und $B$ abgeschlossen, so ist [mm] $A\cap [/mm] B$ kompakt. Das Problem ist, wieso ist [mm] $L^\infty_+$ [/mm] abgeschlossen in der schwachen-stern Topologie?

Danke für eure Hilfe

Liebe Grüsse

marianne

        
Bezug
Banach Alaoglou: Antwort
Status: (Antwort) fertig Status 
Datum: 11:47 Mo 17.06.2013
Autor: felixf

Moin marianne!

> Wenn ich auf [mm]L^\infty[/mm] die schwache-stern  betrachte, dann

Du meinst vermutlich, dass du auf [mm] $(L^1)^\ast$, [/mm] was isomorph zu [mm] $L^\infty$ [/mm] ist, die schwache-Stern-Topologie betrachtest. Oder?

> weiss ich, dass jeder Ball [mm]B_n[/mm] mit Radius [mm]n[/mm] kompakt ist.
> Wieso ist aber folgende Teilmenge ebenfalls kompakt?
>  
> [mm]B_n\cap L^\infty_+[/mm]
>  
> wobei [mm]L^\infty_+[/mm] einfach alle [mm]f\in L^\infty[/mm] sind mit [mm]f\ge 0[/mm].
> Ich kenne den Satz: Wenn [mm]A[/mm] kompakt ist und [mm]B[/mm] abgeschlossen,
> so ist [mm]A\cap B[/mm] kompakt. Das Problem ist, wieso ist
> [mm]L^\infty_+[/mm] abgeschlossen in der schwachen-stern Topologie?

Versuch es doch mal nachzupruefen! Wie ist die schwache-Stern-Topologie definiert? Was musst du nachpruefen, damit eine Menge bzgl. dieser abgeschlossen ist?

Und, was du dazu auch brauchst: wie sieht der Isomorphismus [mm] $(L^1)^\ast \cong L^\infty$ [/mm] aus?

LG Felix


Bezug
                
Bezug
Banach Alaoglou: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Mo 17.06.2013
Autor: marianne88

Guten Tag Felix

Genau, ich betrachte [mm] $L^\infty$ [/mm] als den Dualraum von [mm] $L^1$. [/mm] Ich glaube, dass ich es zeigen konnte: Wenn ich irgendeine [mm] $g\in L^1_+$ [/mm] nehme, dann gilt: (beachte [mm] $\phi_g(f):=\langle f,g\rangle [/mm] = [mm] \int [/mm] fg$ für [mm] $f\in L^\infty,g\in L^1$. [/mm]

[mm] $A:=\{f\in L^\infty: \int fg \ge 0\}:=\phi_g^{-1}([0,\infty))$ [/mm]

Da $g>0$ ist, entspricht dies genau der Menge [mm] $L^\infty_+$. [/mm] Somit ist dies schwach-stern abgeschlossen. Richtig?

Liebe Grüsse

marianne

Bezug
                        
Bezug
Banach Alaoglou: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 Mo 17.06.2013
Autor: felixf

Moin marianne,

> Genau, ich betrachte [mm]L^\infty[/mm] als den Dualraum von [mm]L^1[/mm]. Ich
> glaube, dass ich es zeigen konnte: Wenn ich irgendeine [mm]g\in L^1_+[/mm]
> nehme, dann gilt: (beachte [mm]\phi_g(f):=\langle f,g\rangle = \int fg[/mm]
> für [mm]f\in L^\infty,g\in L^1[/mm].
>
> [mm]A:=\{f\in L^\infty: \int fg \ge 0\}:=\phi_g^{-1}([0,\infty))[/mm]
>  
> Da [mm]g>0[/mm] ist, entspricht dies genau der Menge [mm]L^\infty_+[/mm].
> Somit ist dies schwach-stern abgeschlossen. Richtig?

das ist jetzt aber ein rechtes Durcheinander. Sei [mm] $\phi_g(f) [/mm] = [mm] \int [/mm] fg$ fuer $g [mm] \in L^\infty$ [/mm] und $f [mm] \in L^1$; [/mm] dann ist durch [mm] $\Phi [/mm] : g [mm] \mapsto \phi_g$ [/mm] der Isomorphismus [mm] $L^\infty \to (L^1)^\ast$ [/mm] gegeben.

Nun betrachte die Eigenschaft $g [mm] \ge [/mm] 0$ (fast ueberall). Diese ist aequivalent zu [mm] $\int [/mm] f g [mm] \ge [/mm] 0$ fuer alle $f [mm] \ge [/mm] 0$, $f [mm] \in L^1$ [/mm] -- nimm z.B. $f$ als verschiedene Indikatorfunktionen von Mengen mit endlichem Mass.

Die Menge [mm] $L^\infty_+$ [/mm] entspricht also in [mm] $(L^1)^\ast$ [/mm] der Menge $A := [mm] \{ \varphi \in (L^1)^\ast \mid \varphi(f) \ge 0 \text{ fuer alle } f \in L^1 \}$. [/mm] Jetzt musst du zeigen, dass $A$ bzgl. der schwachen-Stern-Topologie auf [mm] $(L^1)^\ast$ [/mm] abgeschlossen ist.

LG Felix


Bezug
                                
Bezug
Banach Alaoglou: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:27 Mo 17.06.2013
Autor: marianne88

Hallo Felix

Danke für deine Geduld. Ich weiss, dass jedes stetige lineare Funktional auf [mm] $L^1$ [/mm] geschrieben werden kann als [mm] $\phi_g(f)=\int [/mm] fg $ für ein [mm] $g\in L^\infty$. [/mm] Also ist [mm] $\phi(f)\ge [/mm] 0$ äquivalent zu [mm] $\int [/mm] fg [mm] \ge [/mm] 0$ was wiederum äquivalent zu [mm] $g\ge [/mm] 0$ ist. Die schwache-stern Topologie wird ja durch die Menge $ [mm] A(g,U):=\{f\in L^\infty: \int f g\subset U\}$. [/mm] Wenn ich jetzt [mm] $U=[0,\infty)$ [/mm] wähle und $g$ irgendeine Funktion in [mm] $L^1_+$, [/mm] dann ist doch dies gerade die Menge [mm] $L^\infty_+$, [/mm] also schwach-stern abgeschlossen. Oder nicht?

Liebe Grüsse

marianne88

Bezug
                                        
Bezug
Banach Alaoglou: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Do 18.07.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de