www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Banachscher Fixpunktsatz
Banachscher Fixpunktsatz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banachscher Fixpunktsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:47 So 02.07.2006
Autor: Sandy857

Aufgabe:
Die Folge [mm] (x_{n})\subset\IR [/mm] sei zu gegebenem [mm] x_{0}\in \IR [/mm] definiert über [mm] x_{n+1}:=cos(x_{n}).Zeigen [/mm] Sie, dass diese Folge für jedes beliebige [mm] x_{0} [/mm] konvergiert.


Ich habe diese Frage in keinem anderen Forum gestellt. Ich habe mir also eine Abbildung definiert [mm] f:[-1,1]\to \IR [/mm] mit f(x)=0,5*cos(x). Diese Abbildung ist stark kontrahieren,da gilt: [mm] \parallel [/mm] f(x)-f(y) [mm] \parallel=\parallel 0,5*cos(x)-0,5*cos(y)\parallel\le [/mm] 0,5* [mm] \parallel [/mm] x-y [mm] \parallel [/mm] Daraus folgt nach Banachschen Fixpunktsatz:Für jeden Startwert [mm] x_{0}\in [/mm] [-1,1] konvergiert die Folge [mm] (x_{n}) [/mm] mit [mm] x_{n+1}:=f({x_n}) [/mm] gegen den Fixpunkt. Kann man nun daraus folgern,dass auch [mm] x_{n+1}:=cos(x_{n}) [/mm] konvergiert?

        
Bezug
Banachscher Fixpunktsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 So 02.07.2006
Autor: Hanno

Hallo.

>Ich habe diese Frage in keinem anderen Forum gestellt. Ich habe mir also eine Abbildung definiert $ [mm] f:[-1,1]\to \IR [/mm] $ mit f(x)=0,5*cos(x). Diese Abbildung ist stark kontrahieren,da gilt: $ [mm] \parallel [/mm] $ f(x)-f(y) $ [mm] \parallel=\parallel 0,5\cdot{}cos(x)-0,5\cdot{}cos(y)\parallel\le [/mm] $ 0,5* $ [mm] \parallel [/mm] $ x-y $ [mm] \parallel [/mm] $ Daraus folgt nach Banachschen Fixpunktsatz:Für jeden Startwert $ [mm] x_{0}\in [/mm] $ [-1,1] konvergiert die Folge $ [mm] (x_{n}) [/mm] $ mit $ [mm] x_{n+1}:=f({x_n}) [/mm] $ gegen den Fixpunkt.

Es ist alles okay, was du hier machst, aber leider hilft es bei der Lösung der Aufgabe nicht weiter. Durch deine Überlegungen beweist du die Existenz eines Fixpunktes der Abbildung $f$ mit [mm] $f(x)=\frac{1}{2}\cos(x)$, [/mm] d.h. ein [mm] $x\in \IR$ [/mm] mit [mm] $2x=\cos(x)$. [/mm] Wir benötigen genau dies für die Abbildung $f$ mit [mm] $f(x)=\cos(x)$. [/mm]

Verwenden wir diese, so sehen wir, dass ohne Einschränkung des Definitionsbereiches eine Abschätzung wie oben nicht möglich ist. Allerdings wissen wir, dass alle Folgenglieder [mm] $x_i, i\geq [/mm] 1$ in $[-1,1]$ liegen, es reicht also, die Kosinusfunktion aus diesem Intervall zu untersuchen. Dort ist die Ableitung durch eine Konstante $c<1$ betraglich nach oben beschränkt. Mit Hilfe des Mittelwertsatzes gelangen wir dadurch zur Abschätzung $|f(x)-f(y)|<c|x-y|$ (warum genau?).

Den Rest solltest du nun alleine packen, denn er unterscheidet sich nicht wesentlich von dem, was du bereits mit der Funktion [mm] $x\mapsto \frac{1}{2}\cos(x)$ [/mm] gemacht hast.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de