www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Basen
Basen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:10 Di 06.02.2007
Autor: diego

Guten Morgen,

wie bestimme ich eine Basis?
Wie kann ich die Basis von Kern(f) und Bild(f) bestimmen?
Ich habe mir mehrere Aufgaben angeschaut, suche aber - wenn es sowas gibt - einen Ansatz den ich immer anwenden kann, so eine Art Faustregel.

Vielen Dank,
diego

        
Bezug
Basen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:52 Di 06.02.2007
Autor: Zebi

1. Möglichkeit: du beginnst mit einem endlichen Erzeugendensystem und lässt der Reihe nach Vektoren weg, die im Erzeugnis der übrigen liegen, bis du ein linear unabhängiges, also minimales Erzeugendensystem hast.
2. Möglichkeit: du beginnst mit einem linear unabhängigen System und fügst der Reihe nach Vektoren hinzu, so dass das erweiterte System wieder linear unabhängig ist. Sobald der Vorgang terminiert hast du ein maximal linear unabhängiges System.
Der Steinische Austauschsatz sagt, dass für endlich erzeugte VR beide Verfahren funktionieren und eine Basis liefern.

Eine Basis des Bildes einer linearen Abbildung findet sich leicht bei gegebener Matrixdarstellung. Die Spalten der Matrix sind Erzeugendensystem des Bildes, also musst du (z.B. mit Hilfe des Gaußalgorithmus) "überflüssige" Vektoren entfernen.

Eine Basis des Kerns einer linearen Abbildung liest man am leichtesten in der strikten Stufenform der zugehörigen Matrix ab. Wegen Dim(V) = Dim(Kern)+Dim(Bild) benötigst du genau so viele linear unabhängige Vektoren aus dem Kern, wie du Nichtstufenindizes hast. Dazu wählst du genau die Nichtstufenindizes und linearkombinierst sie zu 0.

Beispiel:
[mm] \pmat{ 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 7 } [/mm]
Hier sind die Nichtstufenindizes 2 und 4, man liest sofort ab, dass die 2. Spalte = 3*1.Spalte ist und die 4. Spalte 2*1.Spalte 7*3.Spalte.
Man erhält als Basis des Kernes [mm] (\vektor{-3 \\ 1 \\ 0 \\ 0}, \vektor{-2 \\ 0 \\ -7 \\ 1}). [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de