www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Basen, Dimensionsformel
Basen, Dimensionsformel < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen, Dimensionsformel: Korrektur
Status: (Frage) beantwortet Status 
Datum: 23:23 Sa 06.06.2009
Autor: T_sleeper

Aufgabe
V,W Vektorräume.  [mm] f:V\rightarrow [/mm] W ein Homomorphismus.  U,U' Unterräume von V mit [mm] V=U\oplus [/mm] U'.
Es gilt zu beweisen: [mm] U\subseteq [/mm] Ker(f) und [mm] f_{|U'} [/mm] injektiv [mm] \Rightarrow [/mm] U=Ker(f).

Hallo,

ich habe dazu bereits einen Beweis erstellt, aber irgendwie hapert es noch an einem Detail, was sehr wichtig ist.

Nur mal meine Idee:
Ich will zeigen dimKer(f)=dimKer(U). Daraus folgt die Behauptung.

Dazu brauche ich eine Basis von Bild(f). Dazu habe ich folgendes gemacht:
Es ist [mm] h=f_{|U'}:U'\rightarrow [/mm] W mit [mm] h(x)=f(x)\,\,\,\forall x\in [/mm] U' injektiv. Sei nun [mm] x_{i} [/mm] Basis von U'. Dann sind alle Vektoren [mm] f(x_{i})=c_{i} [/mm] Basis von Bild f.

Kann man das so machen? Oder bekomme ich da nicht vielmehr eine Basis von Bild f eingeschränkt auf U'?

Gruß Sleeper

        
Bezug
Basen, Dimensionsformel: Antwort
Status: (Antwort) fertig Status 
Datum: 05:39 So 07.06.2009
Autor: angela.h.b.


> V,W Vektorräume.  [mm]f:V\rightarrow[/mm] W ein Homomorphismus.  
> U,U' Unterräume von V mit [mm]V=U\oplus[/mm] U'.
>  Es gilt zu beweisen: [mm]U\subseteq[/mm] Ker(f) und [mm]f_{|U'}[/mm]
> injektiv [mm]\Rightarrow[/mm] U=Ker(f).
>  Hallo,
>  
> ich habe dazu bereits einen Beweis erstellt, aber irgendwie
> hapert es noch an einem Detail, was sehr wichtig ist.
>  
> Nur mal meine Idee:
>  Ich will zeigen dimKer(f)=dimKer(U). Daraus folgt die
> Behauptung.
>  
> Dazu brauche ich eine Basis von Bild(f). Dazu habe ich
> folgendes gemacht:
> Es ist [mm]h=f_{|U'}:U'\rightarrow[/mm] W mit [mm]h(x)=f(x)\,\,\,\forall x\in[/mm]
> U' injektiv. Sei nun [mm]x_{i}[/mm] Basis von U'. Dann sind alle
> Vektoren [mm]f(x_{i})=c_{i}[/mm] Basis von Bild f.
>  
> Kann man das so machen? Oder bekomme ich da nicht vielmehr
> eine Basis von Bild f eingeschränkt auf U'?


Hallo,

letzteres bekommst Du.

Trotzdem ist Deine Überlegung nicht unnütz.

Nimm jetzt mal an, daß es ein Element des Kerns gibt, welches nicht in U liegt.

Gruß v. Angela




Bezug
                
Bezug
Basen, Dimensionsformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:32 So 07.06.2009
Autor: T_sleeper


> Nimm jetzt mal an, daß es ein Element des Kerns gibt,
> welches nicht in U liegt.
>  
> Gruß v. Angela

Dann müsste dieses Element in U' liegen, wäre folglich unter f Basis des Bildes von f, was aber nicht sein kann, da es ja im Kern(f) liegt.
Also Widerspruch. Und damit dimU=dimKer.

Kann man das so sagen?


Bezug
                        
Bezug
Basen, Dimensionsformel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 So 07.06.2009
Autor: angela.h.b.


> > Nimm jetzt mal an, daß es ein Element des Kerns gibt,
> > welches nicht in U liegt.

>  

Hallo,

> Dann müsste dieses Element in U' liegen,

weil ...

> wäre folglich
> unter f Basis des Bildes von f,

Hä?

Was wolltest Du hier sagen? Wieso sollte dieses eine Element oder sein Bild eine Basis des Bildes sein?

> was aber nicht sein kann,
> da es ja im Kern(f) liegt.
>  Also Widerspruch. Und damit dimU=dimKer.
>  
> Kann man das so sagen?

Bestimmt nicht.


Du hast ja festgestellt, daß für [mm] x\in [/mm] kernf \ U gilt: [mm] x\in [/mm] U'

Was ist f(x)?

Du weißt das f eingeschränkt auf U' injektiv ist. Was weißt Du über den Kern von injektiven Abbildungen?

Was folgt daraus für x und warum kann das nicht sein?

Gruß v. Angela


  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de