www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Basis, Dimension etc.
Basis, Dimension etc. < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis, Dimension etc.: Aufgabe zu lin. Abb.
Status: (Frage) beantwortet Status 
Datum: 08:59 Mi 21.07.2010
Autor: alek

Hallo,

wäre nett, wenn ihr mir sagen könnt, ob der Teil b stimmt bzw. wie kann man das herausfinden:
1 a) Man definiere Lineare Abbildung.

Es seien (V, +, K *) und (W, +, K ,*) Vektorräume. Eine Abbildung f: V [mm] \to [/mm] W heißt linear, wenn [mm] \forall [/mm] x,y [mm] \in [/mm] V, [mm] \lambda \in [/mm] K gilt:
f ist additiv: f(x+y) = f (x) + f(y) und f ist homogen: [mm] f(\lambda [/mm] x) = [mm] \lambda [/mm] f (x)

b) Ordnen Sie V und W zu. (Man soll die einzelnen Teile, d.h. die f(x) zuordnen)

Ich würde das so machen f(x+y) ist aus W und f(x) und f(y) aus V. Allerdings kann ich das nicht begründen und habe auch keine Ahnung, ob das stimmt.

Vielen Dank im Voraus.

alek



        
Bezug
Basis, Dimension etc.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:35 Mi 21.07.2010
Autor: angela.h.b.

Hallo,

der Originalaufgabentext wäre nicht schlecht.

Gruß v. Angela

Bezug
                
Bezug
Basis, Dimension etc.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:49 Mi 21.07.2010
Autor: alek

Hallo Angela,

leider habe ich keinen Originaltext. Das war eine mündliche Prüfungsfrage. Bei der man zunächst lineare Abbildung definieren sollte und dann die einzelnen f(x) zu ordnen. Ich weiß leider nicht, wie die exakte Frage hieß. Man sollte auf jedem Fall sagen, was zu W und was zu V gehört.

Ist das irgendwie möglich?

Gruß alek

Bezug
                        
Bezug
Basis, Dimension etc.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:37 Mi 21.07.2010
Autor: angela.h.b.


> Hallo Angela,
>  
> leider habe ich keinen Originaltext. Das war eine
> mündliche Prüfungsfrage. Bei der man zunächst lineare
> Abbildung definieren sollte und dann die einzelnen f(x) zu
> ordnen. Ich weiß leider nicht, wie die exakte Frage hieß.
> Man sollte auf jedem Fall sagen, was zu W und was zu V
> gehört.
>  
> Ist das irgendwie möglich?

Hallo,

na gut, spielen wir das fröhliche Fragenraten:

vielleicht war die Aufgabe, zu sagen, was Bild f und Kern f sind (Definitionen), und welcher der beiden Mengen sie entstammen?

Gruß v. Angela

Bezug
        
Bezug
Basis, Dimension etc.: Antwort
Status: (Antwort) fertig Status 
Datum: 10:52 Mi 21.07.2010
Autor: fred97


> Hallo,
>  
> wäre nett, wenn ihr mir sagen könnt, ob der Teil b stimmt
> bzw. wie kann man das herausfinden:
>  1 a) Man definiere Lineare Abbildung.
>  
> Es seien (V, +, K *) und (W, +, K ,*) Vektorräume. Eine
> Abbildung f: V [mm]\to[/mm] W heißt linear, wenn [mm]\forall[/mm] x,y [mm]\in[/mm] V,
> [mm]\lambda \in[/mm] K gilt:
>  f ist additiv: f(x+y) = f (x) + f(y) und f ist homogen:
> [mm]f(\lambda[/mm] x) = [mm]\lambda[/mm] f (x)
>  
> b) Ordnen Sie V und W zu. (Man soll die einzelnen Teile,
> d.h. die f(x) zuordnen)
>  
> Ich würde das so machen f(x+y) ist aus W und f(x) und f(y)
> aus V.




Unsinn ! Du hast doch  f: V [mm]\to[/mm] W

Damit:   f(x+y) ist aus W und f(x) und f(y)
ebenfalls


FRED.

> Allerdings kann ich das nicht begründen und habe
> auch keine Ahnung, ob das stimmt.
>
> Vielen Dank im Voraus.
>  
> alek
>
>  


Bezug
                
Bezug
Basis, Dimension etc.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:30 Mi 21.07.2010
Autor: alek

vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de