Basis,Teilraum,Faktorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] $$\mathcal{U} \; [/mm] := [mm] \; \left \langle \vektor{1 \\ 2 \\ 5 \\ 3}, \vektor{2 \\ 4 \\ 10 \\ 6}, \vektor{3 \\ -1 \\ 1 \\ 2}, \vektor{2 \\ -3 \\ -4 \\ -1} \right \rangle.$$
[/mm]
Bestimmen Sie eine Basis von [mm] $\mathcal{U}$, [/mm] sowie einen Teilraum [mm] $\mathcal{T} \leq \mathbb{Q}^{4 \times 1}$ [/mm] mit [mm] $\mathcal{U} \oplus_i \mathcal{T} [/mm] = [mm] \mathbb{Q}^{4 \times 1}.
[/mm]
Geben Sie ferner eine Basis des Faktorraums an. |
Hi,
sitze gerade an dieser Aufgabe, habe die ersten beiden Teile gelöst (hoffentlich richtig), aber wie ich auf den Faktorraum komme, oder wo ich ihn ablesen kann, weiss ich nicht.
Basis von [mm] $\mathcal{U}$
[/mm]
[mm] $$\pmat{ 1 & 2 & 5 & 3 \\ 2 & 4 & 10 & 6 \\ 3 & -1 & 1 & 2 \\ 2 & -3 & -4 & -1} \rightsquigarrow \pmat{ 1 & 2 & 5 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & -7 & -14 & -7 \\ 0 & -7 & -14 & -7}$$
[/mm]
[mm] $$\rightsquigarrow \pmat{ 1 & 2 & 5 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0} \pmat$$
[/mm]
Die verbleibenden Zeilen sind in jedem Fall linear unabhängig, eine Basis von [mm] $\mathcal{U}$ [/mm] ist deshalb:
[mm] $(\vektor{1 \\ 2 \\ 5\\ 3} [/mm] , [mm] \vektor{0 \\ 1 \\ 2\\ 1})$
[/mm]
Teilraum [mm] $\mathcal{T}$
[/mm]
Die Fragestellung nach einem Teilraum [mm] $\mathcal{T} \leq \mathbb{Q}^{4 \times 1}$ [/mm] mit [mm] $\mathcal{U} \oplus_i \mathcal{T} [/mm] = [mm] \mathbb{Q}^{4 \times 1}$ [/mm] müsste ja eigentlich äquivalent zu der Frage sein:
Um welche Elemente (Vektoren) muss ich meine Basis von [mm] $\mathcal{U}$ [/mm] erweitern um alle Elemente in [mm] $\mathbb{Q}^{4x1}$ [/mm] bilden zu können. Deshalb:
Eine weiter Schritt in der Matrixumforumg liefert:
[mm] $$\rightsquigarrow \pmat{ 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0} \pmat$$
[/mm]
Ersetzt man die Nullzeilen durch geeignete Einheitsvektoren [mm] (e_3, e_4) [/mm]
[mm] $$\rightsquigarrow \pmat{ 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1} \pmat$$ [/mm] so lässt sich diese sicherlich auf die Einheitsmatrix [mm] $I_4$ [/mm] umformen. Mit dieser können wir alle Elemente in [mm] $\mathbb{Q}^{4 \times 1}$ [/mm] erstellen. Der gesuchte Teilraum [mm] $\mathcal{T} \leq \mathbb{Q}^{4 \times 1}$ [/mm] ist also:
[mm] $$\mathcal{T} [/mm] = [mm] \{e_1,e_2\}$$
[/mm]
Basis des Faktorraums
Ok, was ist überhaupt ein Faktorraum. In unserem "tollen" Skript finde ich dazu:
Sei [mm] $\mathcal{U} \leq \mathcal{V}$ [/mm] ein Unterraum des K-Vektorraums [mm] $\mathcal{V}$ [/mm] und [mm] $\sim [/mm] := [mm] \sim_{\mathcal{U}}$ [/mm] die zugehörige Kongruenz.
Die Menge [mm] $\mathcal{V}\setminus \sim$ [/mm] der Kongruenzklassen wird mit [mm] $\mathcal{V} \setminus \mathcal{U}$ [/mm] bezeichnet. Die Elemente von [mm] $\mathcal{V}\setminus\mathcal{U} [/mm] heißen Restklassen nach [mm] $\mathcal{U}$ [/mm] und [mm] \mathcal{V}\setminus\mathcal{U} [/mm] heißt auch Faktorraum.
Habe darüber hinaus eine Rezeptartige Beschreibung gefunden:
Ergänze die Basis von $U$ zu einer Basis von $V$ . Die neu hinzugekommenen Vektoren seien mit [mm] $u_{k+1}, [/mm] . . . , [mm] u_n$
[/mm]
bezeichnet. Dann ist der Faktorraum $V/U$ gerade
$V/U = [mm] [u_{k+1} [/mm] + U, . . . , [mm] u_n [/mm] + U]$ .
Mit dieser Beschreibung heisst das also:
der gesuchte Faktorraum ist
[mm] $\mathcal{V} \setminus \mathcal{U} [/mm] = [mm] \mathbb{Q}^{4 \times 1}\setminus \mathcal{U} [/mm] = [mm] [e_3 [/mm] + [mm] \mathcal{U}, e_4 [/mm] + [mm] \mathcal{U}]$
[/mm]
korrekt? Falls ja hätte ich trotzdem noch eine letzte Frage: Wozu ist so ein Faktorraum gut bzw. was kann man sich da (geometrisch?) drunter vorstellen? Habs immer gern wenn ich mit unter diesen ganzen Begriffen was praktisches oder nützliches vorstellen kann ;)
|
|
|
|
> Sei [mm]\mathcal{U} \; := \; \left \langle \vektor{1 \\ 2 \\ 5 \\ 3}, \vektor{2 \\ 4 \\ 10 \\ 6}, \vektor{3 \\ -1 \\ 1 \\ 2}, \vektor{2 \\ -3 \\ -4 \\ -1} \right \rangle.[/mm]
>
> Bestimmen Sie eine Basis von [mm]$\mathcal{U}$,[/mm] sowie einen
> Teilraum [mm]$\mathcal{T} \leq \mathbb{Q}^{4 \times 1}$[/mm] mit
> [mm]$\mathcal{U} \oplus_i \mathcal{T}[/mm] = [mm]\mathbb{Q}^{4 \times 1}.[/mm]
>
> Geben Sie ferner eine Basis des Faktorraums an.
> Hi,
> sitze gerade an dieser Aufgabe, habe die ersten beiden
> Teile gelöst (hoffentlich richtig), aber wie ich auf den
> Faktorraum komme, oder wo ich ihn ablesen kann, weiss ich
> nicht.
>
> Basis von [mm]\mathcal{U}[/mm]
>
> [mm]\pmat{ 1 & 2 & 5 & 3 \\ 2 & 4 & 10 & 6 \\ 3 & -1 & 1 & 2 \\ 2 & -3 & -4 & -1} \rightsquigarrow \pmat{ 1 & 2 & 5 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & -7 & -14 & -7 \\ 0 & -7 & -14 & -7}[/mm]
>
> [mm]\rightsquigarrow \pmat{ 1 & 2 & 5 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0} \pmat[/mm]
>
> Die verbleibenden Zeilen sind in jedem Fall linear
> unabhängig, eine Basis von [mm]\mathcal{U}[/mm] ist deshalb:
>
> [mm](\vektor{1 \\ 2 \\ 5\\ 3} , \vektor{0 \\ 1 \\ 2\\ 1})[/mm]
>
>
> Teilraum [mm]\mathcal{T}[/mm]
> Die Fragestellung nach einem Teilraum [mm]\mathcal{T} \leq \mathbb{Q}^{4 \times 1}[/mm]
> mit [mm]\mathcal{U} \oplus_i \mathcal{T} = \mathbb{Q}^{4 \times 1}[/mm]
> müsste ja eigentlich äquivalent zu der Frage sein:
> Um welche Elemente (Vektoren) muss ich meine Basis von
> [mm]\mathcal{U}[/mm] erweitern um alle Elemente in [mm]\mathbb{Q}^{4x1}[/mm]
> bilden zu können. Deshalb:
>
> Eine weiter Schritt in der Matrixumforumg liefert:
>
> [mm]\rightsquigarrow \pmat{ 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0} \pmat[/mm]
>
> Ersetzt man die Nullzeilen durch geeignete Einheitsvektoren
> [mm](e_3, e_4)[/mm]
>
>
> [mm]\rightsquigarrow \pmat{ 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1} \pmat[/mm]
> so lässt sich diese sicherlich auf die Einheitsmatrix
> [mm]$I_4$[/mm] umformen. Mit dieser können wir alle Elemente in
> [mm]$\mathbb{Q}^{4 \times 1}$[/mm] erstellen. Der gesuchte Teilraum
> [mm]$\mathcal{T} \leq \mathbb{Q}^{4 \times 1}$[/mm] ist also:
>
> [mm]\mathcal{T} = \{e_1,e_2\}[/mm]
>
Hallo,
die Zahlen habe ich nicht geprüft, die Vorgehensweise ist richtig bis hier.
>
> Basis des Faktorraums V/U
> Ok, was ist überhaupt ein Faktorraum. In unserem "tollen"
> Skript finde ich dazu:
> Sei [mm]\mathcal{U} \leq \mathcal{V}[/mm] ein Unterraum des
> K-Vektorraums [mm]\mathcal{V}[/mm] und [mm]\sim := \sim_{\mathcal{U}}[/mm]
> die zugehörige Kongruenz.
> Die Menge [mm]$\mathcal{V}\setminus \sim$[/mm] der Kongruenzklassen
> wird mit [mm]$\mathcal{V} \setminus \mathcal{U}$[/mm] bezeichnet.
> Die Elemente von [mm]$\mathcal{V}\setminus\mathcal{U}[/mm] heißen
> Restklassen nach [mm]$\mathcal{U}$[/mm] und
> [mm]\mathcal{V}\setminus\mathcal{U}[/mm] heißt auch Faktorraum.
>
> Habe darüber hinaus eine Rezeptartige Beschreibung
> gefunden:
> Ergänze die Basis von [mm]U[/mm] zu einer Basis von [mm]V[/mm] . Die neu
> hinzugekommenen Vektoren seien mit [mm]u_{k+1}, . . . , u_n[/mm]
>
> bezeichnet. Dann ist der Faktorraum [mm]V/U[/mm] gerade
> [mm]V/U = [u_{k+1} + U, . . . , u_n + U][/mm].
>
> Mit dieser Beschreibung heisst das also:
> der gesuchte Faktorraum ist
>
> [mm]\mathcal{V} \setminus \mathcal{U} = \mathbb{Q}^{4 \times 1}\setminus \mathcal{U} = [e_3 + \mathcal{U}, e_4 + \mathcal{U}][/mm]
Die eckigen Klammern stehen für das Erzeugnis (lineare Hülle)? Dann stimmt's, und die gesuchte Basis ist [mm] \{e_3 + \mathcal{U}, e_4 + \mathcal{U}}
[/mm]
>
> korrekt? Falls ja hätte ich trotzdem noch eine letzte
> Frage: Wozu ist so ein Faktorraum gut bzw. was kann man
> sich da (geometrisch?) drunter vorstellen?
Anschaulich:
Sei [mm] V:=\IR^3 [/mm] und [mm] U:=<\vektor{1\\2\\3}>.
[/mm]
Der Raum [mm] \IR^3 [/mm] / [mm] <\vektor{1\\2\\3}> [/mm] enthält sämtliche zu [mm] <\vektor{1\\2\\3}> [/mm] parallele Geraden.
Gruß v. Angela
|
|
|
|