www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Basis aus Eigenvektoren
Basis aus Eigenvektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis aus Eigenvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Di 12.08.2008
Autor: bigalow

Aufgabe
Aufgabe:
[Dateianhang nicht öffentlich]

Die Berechnung der Eigenwerte, Eigenräume und der Abbildung [mm] \phi [/mm] zur Basis F ist mir klar und stimmt auch mit der Musterlösung, die mir vorliegt, überein. Ich habe aber nicht verstanden, warum ein Vektor [mm] f_2 [/mm] der [mm] (A-\lambda_1*E_3 )f_2 [/mm] = [mm] f_1 [/mm] erfüllt, orthogonal zu [mm] f_1 [/mm] und [mm] f_3 [/mm] und normiert ist.

Besten Dank für eure Antworten!

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Basis aus Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 Di 12.08.2008
Autor: Somebody


> Aufgabe:
>  [Dateianhang nicht öffentlich]
>  Die Berechnung der Eigenwerte, Eigenräume und der
> Abbildung [mm]\phi[/mm] zur Basis F ist mir klar und stimmt auch mit
> der Musterlösung, die mir vorliegt, überein. Ich habe aber
> nicht verstanden, warum ein Vektor [mm]f_2[/mm] der [mm](A-\lambda_1*E_3 )f_2[/mm]
> = [mm]f_1[/mm] erfüllt, orthogonal zu [mm]f_1[/mm] und [mm]f_3[/mm] und normiert ist.

Dies verlangt auch niemand: aber es mag sich beim Lösen der Aufgabe so ergeben. Vielleicht fragst Du eigentlich nach einem "tieferen" Grund, weshalb das Ergebnis diese speziellen Eigenschaften hat?
Sicher ist immerhin, dass die Eigenräume zu [mm] $\lambda_1$ [/mm] und [mm] $\lambda_2$ [/mm] zueinander orthogonal sind: dies müsste aber im allgemeinen Fall nicht sein. [mm] $f_2$ [/mm] soll offenbar ein wie [mm] $f_1$ [/mm] im Eigenraum zum Eigenwert [mm] $\lambda_1$ [/mm] liegender Vektor sein, dieser Eigenwert hat algebraische Vielfachheit 2 aber nur geometrische Vielfachheit 1. Es wird nun verlangt, dass [mm] $f_{1,2,3}$ [/mm] eine Basis bilden (also linear-unabhängig sind: was für [mm] $f_1$ [/mm] und [mm] $f_3$ [/mm] sicher gilt, weil es sich um Eigenvektoren zu verschiedenen Eigenwerten handelt) und  dass [mm] $(A-\lambda_1 E_3)f_2=f_1$ [/mm] ist. Aus diesen Angaben musst Du einfach [mm] $f_2$ [/mm] zu bestimmen suchen, das ist alles.
Ich denke, der Prof. bereitet euch mit dieser Aufgabe schon etwas auf die "Jordansche Normalform" vor.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de