www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis bestimmen und beweisen
Basis bestimmen und beweisen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis bestimmen und beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:49 Mo 22.11.2010
Autor: Krone

Aufgabe
Bestimmen sie jeweils eine Basis der folgenden Teilmengen der angegebenen R-Vektorräume (mit anschließendem Nachprüfen der beiden Bedingungen!)Wie geht man so etwas wohl an?

a)

V1= [mm] \{\vektor{x1 \\ x2 \\ x3}) \in \R^3 | 2x1 = x3 \} \subset \R^3 [/mm]



Huhu,

also ne Basis hätte ich:

[mm] \vektor{1 \\ 0 \\ 2}, \vektor{0 \\ 1 \\ 0} [/mm]

Ich versteh aber die Aufgabenstellung nicht so ganz, welche 2 Bedingungen sind hier gemeint?
Muss ich hier zeigen dass bei meiner Basis jeweils 2x1=x3 ist?
Oder wie?
Gruß

        
Bezug
Basis bestimmen und beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:52 Mo 22.11.2010
Autor: Krone

Inder Aufgabenstellung soll übrigens stehen dass der Vktor x1,x2,x3 Element von [mm] R^3 [/mm] ist.
Bekomm das irgendwie nicht eingegeben, jetzt steht da ja nur Element von ^3 ;-)

Bezug
        
Bezug
Basis bestimmen und beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:54 Mo 22.11.2010
Autor: schachuzipus

Hallo Krone,


> Bestimmen sie jeweils eine Basis der folgenden Teilmengen
> der angegebenen R-Vektorräume (mit anschließendem
> Nachprüfen der beiden Bedingungen!)Wie geht man so etwas
> wohl an?
>  
> a)
>  
>  [mm]V_1=\{\vektor{x_1 \\ x_2 \\ x_3} \in \IR^3 | 2x_1 = x_3 \} \subset \IR^3[/mm]

Bitte die Vorschaufunktion nutzen vor dem Absenden und v.a. Indizes vernünftig setzen!!

Das ist doch nicht so schwer, nutze den Unterstrich _

>  
>
> Huhu,
>  
> also ne Basis hätte ich:
>  
> [mm]\vektor{1 \\ 0 \\ 2}, \vektor{0 \\ 1 \\ 0}[/mm] [ok]
>  
> Ich versteh aber die Aufgabenstellung nicht so ganz, welche
> 2 Bedingungen sind hier gemeint?
>  Muss ich hier zeigen dass bei meiner Basis jeweils 2x1=x3
> ist?
>  Oder wie?

Du musst zeigen, dass deine Basis ein Erzeugendensystem ist, dass also jeder Vektor aus [mm]V_1[/mm] als LK der beiden Basisvektoren darstellbar ist.

Andererseits musst du die lineare Unabh. der Basisvektoren zeigen.

>  Gruß


LG

schachuzipus


Bezug
                
Bezug
Basis bestimmen und beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:06 Mo 22.11.2010
Autor: Krone


> Du musst zeigen, dass deine Basis ein Erzeugendensystem
> ist, dass also jeder Vektor aus [mm]V_1[/mm] als LK der beiden
> Basisvektoren darstellbar ist.
>  
> Andererseits musst du die lineare Unabh. der Basisvektoren
> zeigen.
>  
> >  Gruß

>

Okay, also in diesem Beispiel würde ich das so machen:

1.) Basisvektoren lin. u:

[mm] \alpha [/mm] * [mm] \vektor{1 \\ 0 \\ 2} [/mm] + [mm] \beta [/mm] * [mm] \vektor{0 \\ 1 \\ 0} [/mm] = [mm] \vektor{0 \\ 0 \\ 0} [/mm]

Ergebnis ist dann sowohl alpha=0, als auch beta=0 (sieht man ja auch direkt). Somit lin. u, da Nullvektor nur trivial darstellbar.

2.) Erz.System:

[mm] \alpha [/mm] * [mm] \vektor{1 \\ 0 \\ 2} [/mm] + [mm] \beta [/mm] * [mm] \vektor{0 \\ 1 \\ 0} [/mm] = [mm] \vektor{x1 \\ x2 \\ x3} [/mm]

Als Matrix dann aufgeschrieben:

[mm] \pmat{ 1 & 0 & | x1 \\ 0 & 1 & | x2 \\ 2 & 0 & |x3 } [/mm]

Dann kommt raus:

alpha=x1
beta=x2
alpha=0,5 x3

Somit x1 = 0,5x3, bzw. 2x1 = x3 (Nebenbed. erfüllt).

Somit gilt:

x1*  [mm] \vektor{1 \\ 0 \\ 2} [/mm] + x2*  [mm] \vektor{0 \\ 1 \\ 0} [/mm] =  [mm] \vektor{x1 \\ x2 \\ 2x1} [/mm]


Korrekt?






>
> LG
>  
> schachuzipus
>  


Bezug
                        
Bezug
Basis bestimmen und beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Mo 22.11.2010
Autor: schachuzipus

Hallo nochmal,

Kannst du bitte Indizes setzen, dann ist das angenehmer zu lesen.

Sonst antworte ich nicht mehr auf deine posts!

Das ist doch fast kein Mehraufwand beim Tippen. Aber die Augen schont es ungemein und die Motivation zu antworten!

>
> > Du musst zeigen, dass deine Basis ein Erzeugendensystem
> > ist, dass also jeder Vektor aus [mm]V_1[/mm] als LK der beiden
> > Basisvektoren darstellbar ist.
>  >  
> > Andererseits musst du die lineare Unabh. der Basisvektoren
> > zeigen.
>  >  
> > >  Gruß

> >
>
> Okay, also in diesem Beispiel würde ich das so machen:
>  
> 1.) Basisvektoren lin. u:
>  
> [mm]\alpha[/mm] * [mm]\vektor{1 \\ 0 \\ 2}[/mm] + [mm]\beta[/mm] * [mm]\vektor{0 \\ 1 \\ 0}[/mm] = [mm]\vektor{0 \\ 0 \\ 0}[/mm]
>  
> Ergebnis ist dann sowohl alpha=0, als auch beta=0 (sieht
> man ja auch direkt). Somit lin. u, da Nullvektor nur
> trivial darstellbar. [ok]
>  
> 2.) Erz.System:
>  
> [mm]\alpha[/mm] * [mm]\vektor{1 \\ 0 \\ 2}[/mm] + [mm]\beta[/mm] * [mm]\vektor{0 \\ 1 \\ 0}[/mm]  = [mm]\vektor{x1 \\ x2 \\ x3}[/mm]
>  
> Als Matrix dann aufgeschrieben:
>  
> [mm]\pmat{ 1 & 0 & | x1 \\ 0 & 1 & | x2 \\ 2 & 0 & |x3 }[/mm]
>  
> Dann kommt raus:
>  
> alpha=x1
>  beta=x2
>  alpha=0,5 x3
>  
> Somit x1 = 0,5x3, bzw. 2x1 = x3 (Nebenbed. erfüllt).
>  
> Somit gilt:
>  
> x1*  [mm]\vektor{1 \\ 0 \\ 2}[/mm] + x2*  [mm]\vektor{0 \\ 1 \\ 0}[/mm] =   [mm]\vektor{x1 \\ x2 \\ 2x1}[/mm] [ok]

Ja, du hast aber etwas komisch angesetzt.

Vllt. "genauer":

Ein Vektor [mm]\in V_1[/mm] hat die Gestalt [mm]\vektor{x_1\\ x_2\\ 2x_1}[/mm]

Und da die LK ansetzen, das liefert natürlich genau die Gl., die du raus hast ...

>  
>
> Korrekt?
>  

Jo

LG

schachuzipus



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de