www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Basis des c^3
Basis des c^3 < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis des c^3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:13 Do 25.03.2010
Autor: EtechProblem

Aufgabe
Überprüfen sie, welches der folgenden 3 Vektoren eine basis des [mm] C^3 [/mm] bilden.
[mm] \vec{a1}= [/mm] $ [mm] \pmat{i\\2\\4+5i} [/mm] $ , [mm] \vec{a2}= [/mm] $ [mm] \pmat{1+i\\2i-2\\3} [/mm] $ , [mm] \vec{a3}= [/mm] $ [mm] \pmat{e^i^\pi\\2i\\-5+4i} [/mm] $

Guten Tag Leute,

kann mir jemand bei dieser Aufgabe helfen. Ich habe leider überhauptkeinen Ansatz und weis nicht wie ich anfangen soll. Es wäre ganz nett wenn ich ein paar Tipps von euch bekomen könnte oder Schlagwörter die man eventuell nachschlagen(googlen) kann:)

MfG Etechproblem

        
Bezug
Basis des c^3: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 Do 25.03.2010
Autor: fred97

Ich lasse die Pfeile bei den [mm] a_i [/mm] mal weg.

Löse das LGS

           [mm] $z_1a_1+z_2a_2+z_3a_3=0$ [/mm]

( [mm] z_2,z_2,z_3 \in \IC) [/mm]

Hat es nur die Lösung [mm] (z_1,z_2,z_3)=(0,0,0), [/mm] so bilden die 3 Vektoren eine Basis des [mm] \IC^3, [/mm] anderenfalls nicht.

FRED

Bezug
                
Bezug
Basis des c^3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:02 Do 25.03.2010
Autor: EtechProblem

Danke erstmal für dein guten Tipp. Das LGS sieht folgendermaßen aus: 6x+6z1i=0 --> x ausklammern: x(6+6i)=0
2y+3yi=0 --> das gleiche
[mm] ze^\pi^i+6zi-5z3 (e^i^/pi [/mm] ist doch 1 oder -1 ) jedenfalls auch bei dieser gleichung z ausklammern
Also zum ende kommt dann (x,y,z)= (0,0,0)und somit bilden sie eine basis des [mm] c^3 [/mm] stimmts?

Bezug
                        
Bezug
Basis des c^3: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Do 25.03.2010
Autor: schachuzipus

Hallo,

> Danke erstmal für dein guten Tipp. Das LGS sieht
> folgendermaßen aus: 6x+6z1i=0 --> x ausklammern:
> x(6+6i)=0

woraus ergibt sich das?

>  2y+3yi=0 --> das gleiche

>  [mm]ze^\pi^i+6zi-5z3 (e^i^/pi[/mm] ist doch 1 oder -1 )

Benutze den Formeleditor, dann kann man das lesen ohne Augsnkrampf ...

> jedenfalls  auch bei dieser gleichung z ausklammern
>  Also zum ende kommt dann (x,y,z)= (0,0,0)und somit bilden
> sie eine basis des [mm]c^3[/mm] stimmts?


Es empfiehlt sich immer, sich vor dem Posten einer Frage im Forum einwenig umzuschauen, siehe dort

LG

schachuzipus

Bezug
                                
Bezug
Basis des c^3: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:42 Do 25.03.2010
Autor: EtechProblem

Vielen Danke. Das ist fast die gleiche aufgabe:).

Bezug
                                        
Bezug
Basis des c^3: Determinante
Status: (Frage) beantwortet Status 
Datum: 18:01 Do 25.03.2010
Autor: EtechProblem

Ich habe die Diskussion Vektorberechnung die du mir mit deiner antwort geschickt hast gelesen und zum schluss schreibt schachuzipus die aufgabe sei mit der Determinante leichter zu lösen. Wenn ich also die determinante habe und sie nicht 0 ist bilden die 3 Vektoren eine Basis des [mm] c^3 [/mm] oder war es umgekehrt?^^

Bezug
                                                
Bezug
Basis des c^3: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Do 25.03.2010
Autor: angela.h.b.


> Wenn ich also die
> determinante habe und sie nicht 0 ist bilden die 3 Vektoren
> eine Basis des [mm]c^3[/mm] oder war es umgekehrt?^^

Hallo,

es ist genauso, wie Du sagst.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de