www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Basis eines Vektors
Basis eines Vektors < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis eines Vektors: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:24 Sa 04.11.2006
Autor: matter

Aufgabe
Gegeben sind die vier Vektoren
a=[-10,2,3]
b=[-1,-9,8]
c=[4,-5,10]
d=[-2,5,7]
Stellen Sie den Vektor d in der Basis {a,b,c} dar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Ich bin Erstsemester MaschBau und dies ist die erste Übung in Technischer Mechanik.

Unser Seminarleiter hat gesagt, dass die Aufgaben maschinell erstellt wurden und somit keine "geraden Werte" rauskommen.

Ich hab die Sache nun durch ein LGS gelöst, da ich das mit Gauß/Determinante oder wie auch immer man das nennt nicht klar komme. WIr hatten das am Gymmi nur ganz kurz und da bin ich nicht durchgestiegen.

Meine Lösung durch LGS

r [-10,2,3] + s [-1,-9,8] + t [4,-5,10] = [-2,5,7]

Ergibt:

[mm] \bruch{597}{707} [/mm] [-10,2,3] - [mm] \bruch{112}{101} [/mm] [-1,-9,8] - [mm] \bruch{943}{707} [/mm] [4,-5,10] = [-2,5,7]

So weit so gut. Das sollte auch stimmen. Allerdings ist der Rechenweg halt eklig und ich wollte jetzt wissen wie ich sowas mit Hilfe einer Determinante lösen kann um auf r, s und t zu kommen.

Schonmal danke im Vorraus.

Martin

        
Bezug
Basis eines Vektors: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Fr 10.11.2006
Autor: zahlenspieler

Hallo Martin,
> Gegeben sind die vier Vektoren
>  a=[-10,2,3]
>  b=[-1,-9,8]
>  c=[4,-5,10]

Du wolltest gern wissen, wie man diese Aufgabe mithilfe von Determinanten lösen kann; ich demonstrier's mal an Deinem Beispiel:

Zunächst wird eine Matrix $A$ gebildet, deren Spalten die Vektoren
$a,b,c$ sind; die sieht dann so aus:
[mm]A=\pmatrix{-10& -1&4 \\2 & -9&-5 \\ 3 & 8 & 10}[/mm].

Dann findest Du die Koordinaten $r,s,t$ des Vektors [mm]\vector{-2 \\ 5 \\ 7}[/mm] in der Basis [mm]{a,b,c}[/mm], indem Du das Gleichungssystem [mm]A\cdot{} \vector{r \\ s \\ t}=\vector{-2 \\ 5 \\ 7}[/mm] löst.

Für [mm]2 \times 2[/mm]- bzw. [mm]3 \times 3[/mm]-Matrizen kann man die Determinante noch recht einfach berechnen; für 3X3 ist das die "Regel von Sarrus" bzw. "Jägerzaun-Regel".

Falls die Determinante von $A$ nicht 0 ist, ergeben sich $r,s,t$ durch [mm]r=\bruch{\det{A_1}}{\det{A}}, s=\bruch{\det{A_2}}{\det{A}}, t=\bruch{\det{A_3}}{\det{A}}[/mm].
Hierbei sind [mm] $A_1, A_2, A_3$ [/mm] Matrizen, die aus $A$ entstehen, wenn man jeweils die 1., 2., 3. Spalte von $A$ durch den Vektor auf der rechten Seite der Gleichung ersetzt.
(Cramersche Regel)
Soweit erstmal.
Mfg
zahlenspieler

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de