www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis ergänzen
Basis ergänzen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis ergänzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Do 01.04.2010
Autor: Palisaden-Honko

Aufgabe
Sei [mm] u_1=\vektor{0\\1\\2\\2}, u_2=\vektor{2\\2\\4\\4}, u_3=\vektor{0\\1\\0\\1} [/mm]

Wenden Sie das Gram-Schmidt-Verfahren auf [mm] u_1 [/mm] bis [mm] u_3 [/mm] an und ergänzen Sie das Resultat zu einer Basis des [mm] \IR^4 [/mm]

Hallo zusammen!

Bei der Aufgabe will mir nicht so recht einfallen, wie ich die Ergänzung durchführen muss.

Gram-Schmidt hat die ONB [mm] \{ \vektor{0\\\bruch{1}{3}\\\bruch{2}{3}\\\bruch{2}{3}}, \vektor{1\\0\\0\\0},\vektor{0\\\bruch{2}{3}\\\bruch{2}{3}\\\bruch{1}{3}}\} [/mm] ergeben.
Wie komm ich jetzt auf einen Vektor, der orthogonal zu den dreien ist?

Gruß,

Honko


        
Bezug
Basis ergänzen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Do 01.04.2010
Autor: angela.h.b.


> Sei [mm]u_1=\vektor{0\\1\\2\\2}, u_2=\vektor{2\\2\\4\\4}, u_3=\vektor{0\\1\\0\\1}[/mm]
>  
> Wenden Sie das Gram-Schmidt-Verfahren auf [mm]u_1[/mm] bis [mm]u_3[/mm] an
> und ergänzen Sie das Resultat zu einer Basis des [mm]\IR^4[/mm]
>  Hallo zusammen!
>  
> Bei der Aufgabe will mir nicht so recht einfallen, wie ich
> die Ergänzung durchführen muss.
>  
> Gram-Schmidt hat die ONB [mm]\{ \vektor{0\\\bruch{1}{3}\\\bruch{2}{3}\\\bruch{2}{3}}, \vektor{1\\0\\0\\0},\vektor{0\\\bruch{2}{3}\\\bruch{2}{3}\\\bruch{1}{3}}\}[/mm]
> ergeben.
> Wie komm ich jetzt auf einen Vektor, der orthogonal zu den
> dreien ist?

Hallo,

Orthogonalität hat was mit dem Skalarprodukt zu tun.

Du suchst einen Vektor, der zu Deinen drei Vektoren orthogonal ist.

Das ergibt ein LGS.

Gruß v. Angela

>  
> Gruß,
>  
> Honko
>  


Bezug
                
Bezug
Basis ergänzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Do 01.04.2010
Autor: Palisaden-Honko


>  
> Hallo,
>  
> Orthogonalität hat was mit dem Skalarprodukt zu tun.
>  
> Du suchst einen Vektor, der zu Deinen drei Vektoren
> orthogonal ist.
>  
> Das ergibt ein LGS.
>  
> Gruß v. Angela

Öhm... Danke für die Antwort. Da gibts nur ein Problem:

Honko [mm] \in [/mm] {Menschen, die schwer von Begriff sind} ;-)

Könntest du das noch ein wenig erläutern?

Gruß, Honko


edit: Ich glaub, es hat bei mir gescheppert:
Meinst du, dass auf den 4. Vektor komme, indem ich ein LGS mit den Skalarprodukten aus je einem bekannten Vektor und dem unbekannten Vektor aufstelle? Dann hab ich aber drei Gleichungen mit 4 Unbekannten...

edit(2): Das LGS wäre dann
[mm] \pmat{ 0 & \bruch{1}{3} & \bruch{2}{3} & \bruch{2}{3}\\ 1 & 0 & 0 & 0 \\ 0 & \bruch{2}{3} & \bruch{2}{3} & \bruch{1}{3}}\vec{x}=\vec{0}, [/mm]
umgeformt zur oberen Dreiecksmatrix:
[mm] \pmat{ 1 & 0 & 0 & 0\\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & \bruch{3}{2}}\vec{x}=\vec{0} [/mm]
[mm] \Rightarrow x_4=\lambda, x_3=-\bruch{3}{2}\lambda, x_2=\lambda, x_1=0 [/mm]
[mm] \gdw \vec{x}=\lambda\vektor{0\\1\\-\bruch{3}{2}\\1} [/mm]

Bin ich auf dem richtigen Weg?

edit(3):
weil [mm] |\vec{x}|=1 [/mm] sein soll (wegen ONB), müsste [mm] \lambda=\bruch{2}{\sqrt{17}} [/mm] sein
[mm] \Rightarrow \vec{x}=\vektor{0\\\bruch{2}{\sqrt{17}}\\-\bruch{3}{\sqrt{17}}\\\bruch{2}{\sqrt{17}}} [/mm]

Stimmt das? Die Lösung kommt mir doch reichlich krumm vor...

Bezug
                        
Bezug
Basis ergänzen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 Do 01.04.2010
Autor: mathfunnel

[mm] Hallo,\\ [/mm]
wahrscheinlich hast du nur einen Schreibfehler (Minuszeichen fehlt) beim Vektor [mm] $(0,\frac{2}{3},-\frac{2}{3},\frac{1}{3})^T$ [/mm] gemacht.
Dein vierter Vektor ist deshalb ein Folgefehler. Er lautet korrekt [mm] $(0,\frac{2}{3},\frac{1}{3},-\frac{2}{3})^T$. [/mm]
Gruß mathfunnel


Bezug
                                
Bezug
Basis ergänzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:14 Do 01.04.2010
Autor: Palisaden-Honko

Och, solange der Lösungsweg stimmt, bin ich glücklich ^^

Danke für die Hilfe!

Gruß, Honko

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de