www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Basis herauslösen
Basis herauslösen < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis herauslösen: Frage
Status: (Frage) beantwortet Status 
Datum: 15:31 Mi 23.03.2005
Autor: Jan-Hein

Hi!

Ich habe ein Problem mit einer Finanzformel.
Die ganze Formel lautet:

[mm] G=((Phi*(1-pf)*((qz^n*(qz-1)/(qz^n-1))*((qB^n-1)/(qB-1))+pf*A*qB^{n-1})/(Phi*qB^n))-1 [/mm]

ich brauche die Auflösung nach qz, dafür habe ich den Term umgewandelt und vereinfacht zu:

W = [mm] qz^n [/mm] * (qz - 1)  /  [mm] (qz^n [/mm] - 1)

bzw..:


W = ( [mm] qz^n+1 [/mm] - [mm] qz^n [/mm] ) / [mm] (qz^n [/mm] - 1 )

Und jetzt hakts: was muß ich tun um qz herauszubekommen?

Danke für brauchbare Tips!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Basis herauslösen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 So 27.03.2005
Autor: Astrid

Hallo,

Ich versuche mich mal an einer Antwort... ;-)

> Ich habe ein Problem mit einer Finanzformel.
>  Die ganze Formel lautet:
>  
> [mm]G=((Phi*(1-pf)*((qz^n*(qz-1)/(qz^n-1))*((qB^n-1)/(qB-1))+pf*A*qB^{n-1})/(Phi*qB^n))-1[/mm]
>
> ich brauche die Auflösung nach qz, dafür habe ich den Term
> umgewandelt und vereinfacht zu:
>  
> W = [mm]qz^n[/mm] * (qz - 1)  /  [mm](qz^n[/mm] - 1)
>  
> bzw..:
>  
>
> W = ( [mm]qz^n+1[/mm] - [mm]qz^n[/mm] ) / [mm](qz^n[/mm] - 1 )
>

Das habe ich jetzt nicht nachvollzogen. Dazu kenne ich die Formel zu wenig. ;-)

> Und jetzt hakts: was muß ich tun um qz herauszubekommen?

Das ganze läuft letztendlich auf eine Nullstellenbestimmung hinaus:
Ich nenne $qz$ jetzt mal $x$ (wegen der Übersichtlichkeit). Du möchtest also lösen:

[mm]W=\bruch{x (x-1)}{x^n-1}[/mm]

Ist das richtig?
Das kannst du leider nur so umformen, etwas besseres fällt mir auch nicht ein..[kopfschuettel]
[mm]W=\bruch{x (x-1)}{x^n-1} \gdw W(x^n-1)=x^2-x \gdw x^n -\bruch{1}{W}x^2 + \bruch{1}{W}x - W = 0[/mm]

Viel mehr kann ich dir leider auch nicht helfen. Es gibt hierfür keine explizite Lösung. Generell würde ich numerische Lösungsverfahren vorschlagen.

Tut mir leid, dass ich dir leider nicht viel mehr sagen kann.

Viele Grüße
Astrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de