www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Basis von Bild und Kern
Basis von Bild und Kern < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis von Bild und Kern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 Di 16.12.2008
Autor: Palisaden-Honko

Aufgabe
Sei [mm] A=\pmat{ 0 & 1 & 3 & -1 & 2 \\ 2 & -2 & 6 & 0 & 6 \\ 1 & -2 & 0 & 1 & 1 } [/mm]
Bestimmen Sie den Rang von A und Basen des Bildes und des Kerns der durch A beschriebenen lin. Abb.

Hallo!
Durch Umformen habe ich die Matrix auf 2 linear unabhängige Zeilenvektoren reduziert:

[mm] \pmat{ 1 & -2 & 0 & 1 &1 \\ 0 & 1 & 3 & -1 & 2 }, [/mm]

was nach meinem Verständnis das Bild der lin. Abbildung ist. Da die beiden Zeilenvektoren linear unabhängig sind, kann man außerdem den Rang der Matrix (=2) ablesen.

Dann hab ich den Kern [mm] \overrightarrow{x} [/mm] der Abb. bestimmt, indem ich [mm] A*\overrightarrow{x}=\overrightarrow{0} [/mm] gelöst hab, wobei drei Variablen frei wählbar sind:

[mm] \overrightarrow{x}=\vektor{6s-3t+eu \\ -3s+t-2u \\ s \\ t \\ u} [/mm]

Mein Problem sind jetzt die Basen (ich versteh die Aufgabe so, dass ich für Kern und Bild je eine bestimmen soll). Beim Bild kann ich die Spaltenvektoren auf 2 linear unabhängige reduzieren:
[mm] \vektor{-1 \\ 1} [/mm] und [mm] \vektor{1 \\ 2}. [/mm]
Das ist doch dann schon eine Basis des Bilds, oder?
Muss ich den Kern dann als Matrixprodukt umschreiben? Das sähe dann so aus: [mm] \pmat{ 6 & -3 & 3 \\ -3 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }*\vektor{s \\ t \\ u} [/mm]
Und dann? Ich brauche doch eigentlich 5 Vektoren mit je 5 Elementen, um eine Basis zu bekommen!?


        
Bezug
Basis von Bild und Kern: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Di 16.12.2008
Autor: angela.h.b.


> Sei [mm]A=\pmat{ 0 & 1 & 3 & -1 & 2 \\ 2 & -2 & 6 & 0 & 6 \\ 1 & -2 & 0 & 1 & 1 }[/mm]
>  
> Bestimmen Sie den Rang von A und Basen des Bildes und des
> Kerns der durch A beschriebenen lin. Abb.
>  Hallo!
>  Durch Umformen habe ich die Matrix auf 2 linear
> unabhängige Zeilenvektoren reduziert:
>  
> [mm]\pmat{ 1 & -2 & 0 & 1 &1 \\ 0 & 1 & 3 & -1 & 2 },[/mm]
>
> was nach meinem Verständnis das Bild der lin. Abbildung
> ist. Da die beiden Zeilenvektoren linear unabhängig sind,
> kann man außerdem den Rang der Matrix (=2) ablesen.

Hallo,

nachgerechnet habe ich nichts, ich gehe davon aus, daß es so richtig ist.

Der Rang der Matrix ist =2, also hat das Bild die Dimension 2.

Das Bild kannst Du an der ZSF nicht direkt ablesen, aber Du kannst ablesen, welche der Startvektoren eine Basis des Bildes sind:

in der ZSF hast Du die führenden Element der Nichtnullzeilen in der 1. und 2.Spalte, also sind der 1. und 2. der ursprünglichen (!) Spaltenvektoren eine basis des Bildes.


> Dann hab ich den Kern [mm]\overrightarrow{x}[/mm] der Abb. bestimmt,
> indem ich [mm]A*\overrightarrow{x}=\overrightarrow{0}[/mm] gelöst
> hab, wobei drei Variablen frei wählbar sind:
>  
> [mm]\overrightarrow{x}=\vektor{6s-3t+u \\ -3s+t-2u \\ s \\ t \\ u}[/mm]

Ich gehe davon aus, daß Du auch hier richtig gerechnet hast.

Es hat jeder Vektor des kerns die Gestalt

[mm] \overrightarrow{x}=s\vektor{6 \\ -3 \\ 1 \\ 0 \\ 0}+t\vektor{3 \\ 1 \\ 0 \\1 \\ 0}+u\vektor{1 \\ -2 \\ 0\\ 0 \\ 1}. [/mm]

Diese drei Vektoren  bilden eine Basis des Kerns.

I


>  
> Mein Problem sind jetzt die Basen (ich versteh die Aufgabe
> so, dass ich für Kern und Bild je eine bestimmen soll).
> Beim Bild kann ich die Spaltenvektoren auf 2 linear
> unabhängige reduzieren:
> [mm]\vektor{-1 \\ 1}[/mm] und [mm]\vektor{1 \\ 2}.[/mm]

Ich hatte das oben jja erklärt. Das, was Du hier tust, ist aber großer Quatsch, denn Deine Abbildung geht ja in den [mm] \IR^3, [/mm] und schon deshalb können diese beiden Vektörchen keine Basis des Bildes sein.

> Und dann? Ich brauche doch eigentlich 5 Vektoren mit je 5
> Elementen, um eine Basis zu bekommen!?

Kommt drauf an, wovon. Für 'ne basis des [mm] \IR^5 [/mm] brauchst Du das. Aber hier geht's doch um kern und Bild.

Gruß v. Angela

>  


Bezug
                
Bezug
Basis von Bild und Kern: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 Di 16.12.2008
Autor: Palisaden-Honko

Das hat geholfen... Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de