www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis von Polynomen bestimmen
Basis von Polynomen bestimmen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis von Polynomen bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Mi 06.07.2011
Autor: BunDemOut

Aufgabe
Sei P der durch folgende Polynome erzeugte Vektorraum:
[mm] P_1(x)=x^3 -2x^2+4x+1 [/mm]
[mm] P_2(x)=2x^3-3x^2+9x-1 [/mm]
[mm] P_3(x)=x^3+6x-5 [/mm]
[mm] P_4(x)=2x^3-5x^2+7x+5 [/mm]

Bestimmen Sie eine Basis von P und seine Dimension

Hey,

zunächst habe ich die Koeffizienten in einer Matrix aufgeschrieben, weiß aber jetzt nicht wies weiter geht...

vielen Dank für eure Hilfe!

        
Bezug
Basis von Polynomen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 Mi 06.07.2011
Autor: reverend

Hallo BunDemOut,

> Sei P der durch folgende Polynome erzeugte Vektorraum:
>  [mm]P_1(x)=x^3 -2x^2+4x+1[/mm]
>  [mm]P_2(x)=2x^3-3x^2+9x-1[/mm]
>  [mm]P_3(x)=x^3+6x-5[/mm]
>  [mm]P_4(x)=2x^3-5x^2+7x+5[/mm]
>  
> Bestimmen Sie eine Basis von P und seine Dimension
>  Hey,
>  
> zunächst habe ich die Koeffizienten in einer Matrix
> aufgeschrieben, weiß aber jetzt nicht wies weiter geht...

Überprüf doch mal, wieviele der Zeilen linear unabhängig sind. Das ist dann auch die gesuchte Dimension.

Vier sind es nicht, schon weil [mm] P_1(x)+P_2(x)=P_3(x)+P_4(x) [/mm] ist.

Grüße
reverend


Bezug
                
Bezug
Basis von Polynomen bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Mi 06.07.2011
Autor: BunDemOut

Ok, habe durch das Gauß-Verfahren 2 Nullzeilen erzeugt, d.h. 2 Polynome sind linear unabhängig. Aber wie bestimme ich die Basis von diesen beiden Polynomen?

lg

Bezug
                        
Bezug
Basis von Polynomen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 Mi 06.07.2011
Autor: schachuzipus

Hallo BDO,


> Ok, habe durch das Gauß-Verfahren 2 Nullzeilen erzeugt,
> d.h. 2 Polynome sind linear unabhängig. [ok] Aber wie bestimme
> ich die Basis von diesen beiden Polynomen?

Nun, wähle dir 2 linear unabhängige aus den 4 gegebenen Polynomen aus ...

>  
> lg

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de