www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Basis von R^X
Basis von R^X < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis von R^X: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:08 Mi 20.11.2013
Autor: Ymaoh

Aufgabe
Sei X eine endliche Menge. Zeigen Sie, dass die Funktionen [mm] {f_{x}}x \in [/mm] X eine Basis von [mm] \IR^X [/mm] sind, wo

[mm] f_{x}(y) [/mm] =  1 für y = x           ...und...  0 für y [mm] \not= [/mm] x

Also, um zu zeigen, dass es sich um eine Basis handelt, muss ich lineare Unabhängikeit zeigen, und zeigen, dass es ein Erzeugendensystem ist.

Die lineare Unabhängikeit ist hier nicht schwer:

Denn:  [mm] f_{x}(y)= f_{1}(y)+.......+f_{t}(y) [/mm]
kann nicht als Linearkombination gebildet werden, da ja per Definition immer nur eine Funktion [mm] \not= [/mm] 0 ist.

Aber ich weiß nicht, wie ich hier ein Erzeugendensystem nachweisen soll?
Wenn z.B. Vektoren gegeben sind, muss ich ja einfach nur "nachrechnen", aber hier geht das ja nicht.

        
Bezug
Basis von R^X: Antwort
Status: (Antwort) fertig Status 
Datum: 08:24 Do 21.11.2013
Autor: fred97


> Sei X eine endliche Menge. Zeigen Sie, dass die Funktionen
> [mm]{f_{x}}x \in[/mm] X eine Basis von [mm]\IR^X[/mm] sind, wo
>  
> [mm]f_{x}(y)[/mm] =  1 für y = x           ...und...  0 für y
> [mm]\not=[/mm] x
>  Also, um zu zeigen, dass es sich um eine Basis handelt,
> muss ich lineare Unabhängikeit zeigen, und zeigen, dass es
> ein Erzeugendensystem ist.
>  
> Die lineare Unabhängikeit ist hier nicht schwer:
>  
> Denn:  [mm]f_{x}(y)= f_{1}(y)+.......+f_{t}(y)[/mm]
>  kann
> nicht als Linearkombination gebildet werden, da ja per
> Definition immer nur eine Funktion [mm]\not=[/mm] 0 ist.

Was ist los ??

Sei [mm] X=\{x_1,...,x_n\} [/mm]  mit [mm] x_i \ne x_j [/mm] für i [mm] \ne [/mm] j.

Zeigen sollst Du: [mm] f_{x_1}, f_{x_2},...,f_{x_n} [/mm] sind linear unabhängig.

Dazu zeige: aus [mm] s_1,...,s_n \in \IR [/mm] und  [mm] s_1f_{x_1}+s_2f_{x_2}+...+s_nf_{x_n}=0 [/mm] folgt [mm] s_1=...=s_n=0 [/mm]


>
> Aber ich weiß nicht, wie ich hier ein Erzeugendensystem
> nachweisen soll?
>  Wenn z.B. Vektoren gegeben sind, muss ich ja einfach nur
> "nachrechnen", aber hier geht das ja nicht.

Nimm ein f [mm] \in \IR^X [/mm] und zeige: es gibt [mm] t_1,...,t_n \in \IR [/mm] mit:

    [mm] f=t_1f_{x_1}+t_2f_{x_2}+...+t_nf_{x_n}. [/mm]

Springt Dir da nicht was in die Augen ? Und zwar, wie Du die [mm] t_j [/mm] zu wählen hast ?

FRED


Bezug
                
Bezug
Basis von R^X: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:07 Do 21.11.2013
Autor: Ymaoh

Also zur Linearität: Da hab ich mich falsch ausgedrückt. Natürlich muss gelten:

[mm] s_{1}f_{x1}+.........+s_{n}f_{xn}=0 [/mm]

Nehmen wir an, Y = 1, dann ist genau [mm] f_{x1} [/mm] = 1, und damit [mm] s_{1}=0, [/mm] alle anderen s beliebig. Da aber  [mm] s_{1}f_{x1}+.........+s_{n}f_{xn}=0 [/mm]
für alle Y betrachtet wird, nimmt jede [mm] f_{xn} [/mm] für ein x den Wert 1 ein, während alle anderen 0 sind. Und dauraus folgt: s1=s2=...=sn=0



Und zu Zwei:
erstmal noch eine Frage:  was bedeutet eigentlich [mm] \IR^X [/mm] ? Denn X ist ja eine Menge? Ist dann die Dimension von [mm] \IR^X [/mm]  gleich der Kardinalität von X, oder wie ist das gemeint?

Und nein, leider fällt mir da erstmal nichts ins Auge...
f ist eine beliebige Funktion aus [mm] \IR^X, [/mm] und für die muss dann  [1 für y = x           ...und...  0 für y] nicht mehr erfüllt sein?

Bezug
                        
Bezug
Basis von R^X: Antwort
Status: (Antwort) fertig Status 
Datum: 09:36 Do 21.11.2013
Autor: fred97


> Also zur Linearität: Da hab ich mich falsch ausgedrückt.
> Natürlich muss gelten:
>  
> [mm]s_{1}f_{x1}+.........+s_{n}f_{xn}=0[/mm]
>  
> Nehmen wir an, Y = 1


Hä ?  Was ist Y ?




> , dann ist genau [mm]f_{x1}[/mm] = 1, und damit
> [mm]s_{1}=0,[/mm] alle anderen s beliebig. Da aber  
> [mm]s_{1}f_{x1}+.........+s_{n}f_{xn}=0[/mm]
>  für alle Y betrachtet wird, nimmt jede [mm]f_{xn}[/mm] für ein x
> den Wert 1 ein, während alle anderen 0 sind. Und dauraus
> folgt: s1=s2=...=sn=0

Das ist doch Murks !

Wir haben:  [mm]s_{1}f_{x1}+.........+s_{n}f_{xn}=0[/mm].

Werte wir das an der Stelle [mm] x_j [/mm] aus, so bekommen wir

    [mm] s_j=0, [/mm]

denn [mm] f_{x_j}(x_j)=1 [/mm] und  [mm] f_{x_j}(x_i)=0, [/mm] für i [mm] \ne [/mm] j.


>  
>
>
> Und zu Zwei:
> erstmal noch eine Frage:  was bedeutet eigentlich [mm]\IR^X[/mm] ?

Das ist die Menge Aller Abbildungen f:X [mm] \to \IR [/mm]


> Denn X ist ja eine Menge? Ist dann die Dimension von [mm]\IR^X[/mm]  
> gleich der Kardinalität von X, oder wie ist das gemeint?
>  
> Und nein, leider fällt mir da erstmal nichts ins Auge...
>  f ist eine beliebige Funktion aus [mm]\IR^X,[/mm] und für die muss
> dann  [1 für y = x           ...und...  0 für y] nicht
> mehr erfüllt sein?


Mit dem Ansatz

  

    $ [mm] f=t_1f_{x_1}+t_2f_{x_2}+...+t_nf_{x_n} [/mm] $

hat man [mm] f(x_j)=t_j. [/mm] Klingelt es nun ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de