www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Basis von m x n - Matrizen
Basis von m x n - Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis von m x n - Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:14 Di 02.06.2009
Autor: moattiliatta

Hallo,

ich habe ein sehr allgemeines Problem bei obiger Aufgabenstellung, mir fehlt nämlich jeglicher Ansatz. Zwar ist mir klar, dass die Basis eines Raums aus linear unabhängigen Vektoren bestehen muss, allerdings weiß ich dieses Wissen nicht umzusetzen.

Meine Aufgabe besteht darin, eine Basis der m x n Matrizen mit n*m Elementen zu finden. Ich dachte jetzt an etwas dieser Art;

[mm] \pmat{ 1 & 0 & ... & 0 \\ ... & ... & ... & ... \\ ... & ... & ... & ...} [/mm] + ... +
[mm] \pmat{ 0 & ... & ... & 0 \\ ... & ... & ... & ... \\ ... & ... & 0 & 1} [/mm]

(n Spalten, m Zeilen)

Aber das finde ich irgendwie nicht sinnvoll & eher zu speziell. Könnte mir da jemand weiterhelfen?

Mit vielem Dank im Voraus,
moatilliatta

        
Bezug
Basis von m x n - Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Di 02.06.2009
Autor: blascowitz

Hallo,


wieso ist dir diese Basis zu speziell. Die Menge [mm] $\{ \pmat{ 1 & 0 & ... & 0 \\ ... & ... & ... & ... \\ ... & ... & ... & ...} , \pmat{ 0 & 1 & ... & 0 \\ ... & ... & ... & ... \\ ... & ... & ... & ...},..., \pmat{ 0 & ... & ... & 0 \\ ... & ... & ... & ... \\ ... & ... & 1 & 0} , \pmat{ 0 & ... & ... & 0 \\ ... & ... & ... & ... \\ ... & ... & 0 & 1} \}$ [/mm]  mit m Zeilen und n Spalten ist linear unabhängig(warum?) und hat offensichtlich m*n Elemente. Das bedeutet.... ?

Viele Grüße

Bezug
                
Bezug
Basis von m x n - Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Di 02.06.2009
Autor: moattiliatta

Weil sich mit den Vektoren alle anderen Vektoren darstellen lassen und sie selber nicht mit anderen Vektoren dargestellt werden können. Lapidar gesagt. Die Dimension der m x n - Matrizen ist ja somit n * m. Reicht es einfach durch Beweis (oder Gegenbeweis) zu zeigen, dass die o.g. Vektoren lin. unabhängig sind?

Bezug
                        
Bezug
Basis von m x n - Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Di 02.06.2009
Autor: schachuzipus

Hallo moattiliatta,

> Weil sich mit den Vektoren alle anderen Vektoren darstellen
> lassen und sie selber nicht mit anderen Vektoren
> dargestellt werden können. Lapidar gesagt. Die Dimension
> der m x n - Matrizen ist ja somit n * m. Reicht es einfach
> durch Beweis (oder Gegenbeweis) zu zeigen, dass die o.g.
> Vektoren lin. unabhängig sind?  

Das ist arg schwammig, die Dimension des VRes der [mm] $m\times [/mm] n$-Matrizen ist offensichtlich [mm] $n\cdot{}m$ [/mm]

Wenn du zeigen kannst, also vorrechnen, dass die obigen Matrizen ein EZS bilden, hast du gewonnen, dann hast du ein minimales EZS, mithin eine Basis.

Du solltest also das, was du in deinem ersten Satz blumig umschreibst, noch kurz mathematisieren :-)

Nimm dir eine bel. [mm] $m\times [/mm] n$-Matrix [mm] $A=\pmat{a_{11}&...&...&...&a_{1n}\\a_{21}&...&...&...&a_{2n}\\\vdots{}&\vdots{}&\vdots{}&\vdots{}&\vdots{}\\\vdots&\vdots{}&\vdots{}&\vdots{}&\vdots{}\\a_{m1}&...&...&...&a_{mn}}$ [/mm] her und schreibe kurz die gesuchte LK hin, dann hast du's schon


LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de