www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Basistransformation
Basistransformation < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basistransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Fr 01.09.2006
Autor: cloe

Hallo,

ich versuche momentan die Basistransformation zu verstehen.

Dies versuche ich anhand des Beispiels auf der Seite

http://de.wikipedia.org/wiki/Basistransformation


Bei dem Beispiel verstehe ich nicht wie man auf die Matrix

[mm] \begin{pmatrix} \frac{3}{2} & 1 & 1 \\ \frac{1}{2} & -1 & 0 \\ -\frac{1}{2} & 2 & 1 \end{pmatrix}. [/mm] kommt

Kann mir da bitte jemand bei dem Beispiel weiterhelfen.


Danke im voraus.

        
Bezug
Basistransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 Fr 01.09.2006
Autor: leduart

Hallo Cloe
Hast du den Satz überlesen:

Um die Matrix der Basistransformation zu berechnen, müssen wir die drei linearen Gleichungssysteme

    vi = β1iw1 + β2iw2 + β3iw3

nach den 9 Unbekannten βji auflösen und erhalten die Matrix


und kurz vorher:

und in den Spalten der Matrix jeweils die Koordinatendarstellungen der Basisvektoren [mm] v_i \in \mathcal{B} [/mm] bezüglich der Basis [mm] \mathcal{C} [/mm] stehen..


Wenn dus nachvollziehen willst musst du wirklich das Gleichungssystem lösen, sonst kannst du auch einfach nachprüfen v1=3/2*w1 + 1/2*w2 -1/2*w3
die Koeffizienten der ersten Spalte.
Gruss leduart

Bezug
                
Bezug
Basistransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:21 Fr 01.09.2006
Autor: cloe

Hallo,

wie sieht denn das Gleichungssystem aus?

Momentan steh ich total auf dem Schlauch:-/

cloe

Bezug
                        
Bezug
Basistransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Fr 01.09.2006
Autor: Martin243

Hallo,

fasst man die drei Spaltenvektoren [mm]w_1,w_2,w_3[/mm] zur Matrix [mm]W[/mm] und die drei Spaltenvektoren [mm]v_1,v_2,v_3[/mm] zur Matrix [mm]V[/mm] zusammen und nennt die Transformationsmatrix [mm]T=\left(\beta_{ij}\right)[/mm], dann kann man das Gleichungssystem so formulieren:
[mm]W*T = V[/mm]
oder
[mm]W*T - V = 0[/mm]

Nun kann man das ausrechnen und erhält 9 Gleichungen für die [mm]\beta_{ij}[/mm]. Oder man rechnet direkt mit den Matrizen:
[mm]W*T = V [/mm]
[mm]\Leftrightarrow T = W^{-1}*V[/mm]

T ist dann die gesuchte Transformationsmatrix.


Gruß
Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de