www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Basistransformation
Basistransformation < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basistransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:10 Mi 21.03.2007
Autor: Leader

Aufgabe
Beispiel:

Sei K ein 2-dimensionaler Vektorraum mit der Standardbasis B1.

Gegeben sei der Koordinatenvektor A := [mm] \vektor{2 \\ 5} [/mm] bezüglich B1.

Sei nun B2 eine andere Basis des Raums [mm] K^2. [/mm]

B2 := [mm] \vektor{1 \\ 2}, \vektor{1 \\ 1} [/mm]

Wie lautet nun der Koordinatenvektor A bezüglich der Basis B2?

Hallo.


Ich habe eine Frage zur Basistransformation, weil ich hierbei immer noch nicht richtig durchblicke.
Wie müsste ich vorgehen, um die obige Beispielaufgabe zu lösen? In unserem Matheskript steht irgendetwas von einer inversen Transformationsmatrix, ich weiß aber nicht konkret, wie man die bildet bzw. wie man dann auf die Koordinaten des Koordinatenvektors bezüglich einer anderen Basis gelangt.

Freundliche Grüße,
Leader.


        
Bezug
Basistransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Mi 21.03.2007
Autor: angela.h.b.


> Beispiel:
>  
> Sei K ein 2-dimensionaler Vektorraum mit der Standardbasis
> B1.
>  
> Gegeben sei der Koordinatenvektor A := [mm]\vektor{2 \\ 5}[/mm]
> bezüglich B1.
>  
> Sei nun B2 eine andere Basis des Raums [mm]K^2.[/mm]
>
> B2 := [mm]\vektor{1 \\ 2}, \vektor{1 \\ 1}[/mm]
>  
> Wie lautet nun der Koordinatenvektor A bezüglich der Basis
> B2?

.

>  Wie müsste ich vorgehen, um die obige Beispielaufgabe zu
> lösen?

Hallo,

wenn Du [mm] \vektor{2 \\ 5}_{B_1} [/mm] bzgl. [mm] B_2 [/mm] darstellen möchtest,
mußt Du die a,b finden mit

[mm] a\vektor{1 \\ 2}+b\vektor{1 \\ 1}=\vektor{2 \\ 5}, [/mm]

was auf die Lösung eines LGS hinausläuft.

Hast Du a und b gefunden, dann ist [mm] \vektor{2 \\ 5}_{B_1}=\vektor{a \\ b}_{B_2}. [/mm]



In unserem Matheskript steht irgendetwas von einer

> inversen Transformationsmatrix, ich weiß aber nicht
> konkret, wie man die bildet bzw. wie man dann auf die
> Koordinaten des Koordinatenvektors bezüglich einer anderen
> Basis gelangt.

So kann man das auch machen.
Das geht so:

steckst Du die Spalten von [mm] B_2 [/mm] in eine Matrix [mm] M:=\pmat{ 1 & 1 \\ 2 & 1 }, [/mm]

so ist das die Matrix, welche Dir [mm] B_2 [/mm] in Koordinaten bzgl. [mm] B_1 [/mm] liefert.

Stecke ich den ersten Basisbektor von [mm] B_2 [/mm] in Koordinaten bzgl. [mm] B_2 [/mm] hinein, [mm] \vektor{1 \\ 0}_{B_2}, [/mm] so erhalte ich genau diesen Vektor in Koordinaten bzgl. [mm] B_1, [/mm] der kanonischen Basis. Probier's aus.

Willst Du Vektoren, die in Koordinaten bzgl. der Standardbasis gegeben sind, umwandeln in solche in Koordinaten bzgl. [mm] B_2, [/mm]

kannst Du das erreichen, indem Du sie mit [mm] M^{-1} [/mm] multiplizierst.

[mm] M^{-1} [/mm] ist die Matrix, die Dir die Transformation von [mm] B_1 [/mm] nach [mm] B_2 [/mm] durchführt.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de