www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Basiswechsel
Basiswechsel < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basiswechsel: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:29 Do 20.03.2008
Autor: Charlie1984

Aufgabe
Es seien mit

[mm] b_1:= \vektor{1 \\ 2} [/mm] , [mm] b_2:= \vektor{1 \\ 1} [/mm] und [mm] b_1':= \vektor{5 \\ 3} [/mm] , [mm] b_2':= \vektor{3 \\ 2} [/mm]

bzw.

[mm] c_1:= \vektor{1 \\ 0 \\ 0} [/mm] , [mm] c_2:= \vektor{1 \\ 1 \\ 0} [/mm] , [mm] c_3:= \vektor{-2 \\ 1 \\ 1} [/mm] und [mm] c_1':= \vektor{\wurzel{2} \\ 0 \\ 1} [/mm] , [mm] c_2':= \vektor{0 \\ 1 \\ 0} [/mm] , [mm] c_3':= \vektor{1 \\ 0 \\ \wurzel{2}} [/mm]

Basen in den reellen Vektorräumen [mm] \IR^{2} [/mm] bzw. [mm] \IR^{3} [/mm] gegeben. Ferner sei eine lineare Abbildung

[mm] L:\IR^{2} \to \IR^{3} [/mm] , [mm] \lambda_1 \vektor{1 \\ 2} [/mm] + [mm] \lambda_2 \vektor{1 \\ 1} \mapsto \lambda_2 \vektor{1 \\ 0 \\ 0} [/mm] + [mm] (\lambda_1 [/mm] - [mm] \lambda_2)\vektor{1 \\ 1 \\ 0} [/mm] - [mm] \lambda_1 \vektor{-2 \\ 1 \\ 1} [/mm]

gegeben.

(a) Ermitteln Sie die Darstellungsmatrix A von L bzgl. der Basen [mm] b_1; b_2 [/mm] und [mm] c_1; c_2; c_3. [/mm]


(b) Berechnen Sie die Darstellungsmatrizen T bzw. U der Koordinatentransformationen zum Basiswechsel
von [mm] b_1; b_2 [/mm] zu [mm] b_1' [/mm] ; [mm] b_2' [/mm] bzw. von [mm] c_1; c_2; c_3 [/mm] zu [mm] c_1'; c_2'; c_3'. [/mm]


(c) Berechnen Sie die Darstellungsmatrix  A' von L bzgl. der Basen [mm] b_1'; b_2' [/mm] und [mm] c_1'; c_2'; c_3'. [/mm]

Hallo erstmal!
Also ich habe einige Probleme mit dieser Aufgabe.

Ich habe zunächst die Die Basisvektoreen auf die funktion losgelassen und dann versucht sie in der Basis C darzustellen.

Nun weiss ich aber nicht welche Basisvektoren...

Ich schreib mal was ich gemacht habe :

zu a)
1. Basisvektor auf L losgelassen

[mm] L(\vektor{1 \\ 2}) [/mm] = 1 [mm] *\vektor{1 \\ 0 \\ 0} [/mm] + (1 [mm] -2)*\vektor{1 \\ 1 \\ 0} [/mm] - 1* [mm] \vektor{-2 \\ 1 \\ 1} [/mm] = [mm] \vektor{2 \\ -2 \\ -1} [/mm]

bzgl C :  [mm] \vektor{1 \\ -1 \\ -1} [/mm]

2. Basisvektor auf L losgelassen

[mm] L(\vektor{1 \\ 1}) [/mm] = 1 [mm] *\vektor{1 \\ 0 \\ 0} [/mm] + (1 [mm] -1)*\vektor{1 \\ 1 \\ 0} [/mm] - 1* [mm] \vektor{-2 \\ 1 \\ 1} [/mm] = [mm] \vektor{3 \\ -1 \\ -1} [/mm]

bzgl C :  [mm] \vektor{1 \\ 0 \\ -1} [/mm]

Also wäre [mm] M_B_C [/mm] = [mm] \pmat{ 1 & -1 & -1 \\ 1 & 0 & -1 } [/mm]

zu b)

Sei T die Tranformationsmatrix von b nach b' :

Stelle [mm] b_1 [/mm] als lin. Kombi. von [mm] b_1' [/mm] und [mm] b_2' [/mm] , also [mm] \vektor{1 \\ 2} [/mm] = 1 * [mm] b_1' [/mm] - [mm] 1*b_2' =\vektor{1 \\ -1} [/mm] (erste Spalte der Trafo-Matrix)

Stelle [mm] b_2 [/mm] als lin. Kombi. von [mm] b_1' [/mm] und [mm] b_2' [/mm] , also [mm] \vektor{1 \\ 1} [/mm] = ... [mm] \vektor{4 \\ -5} [/mm]

Also T = [mm] \pmat{ 1 & -1 \\ 4 & -5 } [/mm]

Bevor ich weiterrechne wollte ich fragen ob das alles so korrekt ist ,nicht das ich nachher am anfang nen Fehler gemacht habe und alles nochmal rechnen muss.

Vielen Dank!

        
Bezug
Basiswechsel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Do 20.03.2008
Autor: Zneques

Hallo,

> Bevor ich weiterrechne wollte ich fragen ob das alles so korrekt ist ,nicht das ich nachher am anfang nen Fehler gemacht habe und alles nochmal rechnen muss.

Gute Vorahnung. :-)
a)
[mm] M_{BC}*(e_1)_B=L((e_1)_B)=L(1*\vektor{1 \\ 2})=1*\vektor{1 \\ 1 \\ 0}-1*\vektor{-2 \\ 1 \\ 1}=\vektor{0\\1\\-1}_C=\pmat{ 0 & \ast \\ 1 & \ast \\ -1 & \ast}*(e_1)_B [/mm]
Für [mm] (e_2)_B [/mm] nun auch noch...

b)

> [mm] \vektor{1 \\ 2} [/mm] $ = 1 * $ [mm] b_1' [/mm] $ - $ [mm] 1\cdot{}b_2' =\vektor{1 \\ -1} [/mm]

Nee, stimmt doch gar nicht :  [mm] \vektor{5 \\ 3}-\vektor{3 \\ 2}=\vektor{2\\1} [/mm]
Sicherer gehts, wenn du  erst die Transformationen in die Einheitsbasis [mm] E_2 [/mm] errechnest. Dann ist [mm] T=T_{E_2\to B'}*T_{B\to E_2} [/mm] , wobei [mm] T_{E_2\to B'}=T_{B'\to E_2}^{-1}. [/mm]

Wenns es richtig gewesen wäre , dann würde folgen : [mm] \vektor{1 \\ 0}_B=\vektor{1 \\ 2}=\vektor{1 \\ -1}_{B'} [/mm]
Damit [mm] T*\vektor{1 \\ 0}_B=\vektor{1 \\ -1}_{B'} [/mm] muss gelten [mm] T=\pmat{ 1 & \ast \\ -1 & \ast } [/mm]

Ciao.

Bezug
                
Bezug
Basiswechsel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Do 20.03.2008
Autor: Charlie1984

Ahhh..also doch die einheitsvektoren...

also dann habe ich beim 2.  [mm] \vektor{0 \\ -1 \\ 0} [/mm] bzgl B und bzgl C [mm] =\vektor{1 \\ -1 \\ 0} [/mm] raus.

also ist [mm] M_B_C [/mm] : [mm] \pmat{ 0 & 1 \\ 1 & -1 \\ -1 & 0 }. [/mm]

Und zu b) .. da hab ich mich verrechnet.
es ist [mm] b_1 [/mm] bzgl [mm] b_1' [/mm] und [mm] b_2' [/mm] = [mm] \vektor{-4 \\ 7} [/mm]
und [mm] b_2 [/mm] bzgl [mm] b_1' [/mm] und [mm] b_2' [/mm] = [mm] \vektor{-1 \\ 2} [/mm]

also : [mm] \pmat{ -4 & -1 \\ 7 & 2 } [/mm] = T    ...ist das richtig ? ;-)



Bezug
                        
Bezug
Basiswechsel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Do 20.03.2008
Autor: Zneques


> beim 2.  $ [mm] \vektor{0 \\ -1 \\ 0} [/mm] $ bzgl B

??? B ist doch nur 2-dim.
Du meintest sicher [mm] \vektor{0 \\ 1} [/mm]  bzgl. B.

> ...ist das richtig ?

Ansonsten ist es so, wie es sein sollte. [ok]

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de