www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Basiswechsel einer Matrix
Basiswechsel einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basiswechsel einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Sa 01.03.2008
Autor: tibbery

Aufgabe
Gegeben seien w1, w2, w3, w4 mit
w1= [mm] \vektor{1/1/-3/2/-1} [/mm]    
w2= [mm] \vektor{0/-2/6/2/4} [/mm]  
w3= [mm] \vektor{1/1/-2/0/4} [/mm]   und
w4= [mm] \vektor{2/-2/3/0/-1} [/mm]

Sei U der Teilvektorraum, der von w1,w2,w3,w4 aufgespannt wird.

Zeigen sie, dass w1,w2,w3,w4 eine Basis von U bilden.
Zeigen sie, dass v1,v2,v3,v4  mit

v1= [mm] \vektor{-2/2/-9/-2/-21} [/mm]    
v2= [mm] \vektor{1/-7/14/-4/-4} [/mm]    
v3= [mm] \vektor{4/-2/5/2/11} [/mm]   und
v4= [mm] \vektor{-1/9/-21/4/-5} [/mm]

ebenfalls eine Basis von U bilden.

Berechnen sie die Matrix S= (s ik)  [mm] \in \IR [/mm] (4x4)  mit  

w k = [mm] \summe_{i=1}^{4} [/mm]  s ik  v i        für k=1,2,3,4.


(i und k sollen Indizes sein)

Hallo!  Ich bin mir nicht ganz sicher, ob ich im richtigen Forum bin... hab so eine Aufgabenstellung aber nicht finden können.

Also, das Problem ist folgendes:
Ich weiß, dass ich zeigen muss, dass die "w's"  linear unabhängig sind. Dazu benutze ich den Gauß?
Um nun zu zeigen, das die "v's" ebenfalls eine Basis von U sind, muss ich doch nichts weiter tun,als zu zeigen,dass sie ebenfalls lin. unabhängig sind, richtig? Muss ich da sonst noch etwas weiteres tun?

Das eigentliche Problem ist der letzte Aufgabenteil. Ganz salopp ausgedrückt steht da ja :  w= s mal v
Wenn ich nun also die "w's" als Matrix den "v's" als Matrix gleichsetze, welche der beiden muss ich dann zur Einheitsmatrix machen, um auf S zu kommen? (Das habe ich noch nie verstanden)

Mir reicht eine theoretische Antwort völlig. Dieses Matrizenabgetippe ist wahrlich nicht spaßig und es ist auch gut möglich, dass ich oben irgendeine Zahl falsch abgetippt habe!

Vielen Dank im Vorraus!  

und: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Juliane

        
Bezug
Basiswechsel einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Sa 01.03.2008
Autor: angela.h.b.


> Gegeben seien w1, w2, w3, w4 mit
> w1= [mm]\vektor{1/1/-3/2/-1}[/mm]    
> w2= [mm]\vektor{0/-2/6/2/4}[/mm]  
> w3= [mm]\vektor{1/1/-2/0/4}[/mm]   und
> w4= [mm]\vektor{2/-2/3/0/-1}[/mm]
>  
> Sei U der Teilvektorraum, der von w1,w2,w3,w4 aufgespannt
> wird.
>  
> Zeigen sie, dass w1,w2,w3,w4 eine Basis von U bilden.
>  Zeigen sie, dass v1,v2,v3,v4  mit
>
> v1= [mm]\vektor{-2/2/-9/-2/-21}[/mm]    
> v2= [mm]\vektor{1/-7/14/-4/-4}[/mm]    
> v3= [mm]\vektor{4/-2/5/2/11}[/mm]   und
> v4= [mm]\vektor{-1/9/-21/4/-5}[/mm]
>  
> ebenfalls eine Basis von U bilden.
>  
> Berechnen sie die Matrix S= (s ik)  [mm]\in \IR[/mm] (4x4)  mit  
>
> w k = [mm]\summe_{i=1}^{4}[/mm]  s ik  v i        für k=1,2,3,4.
>  
>
> (i und k sollen Indizes sein)

Hallo,

[willkommenmr].

Du findest Eingabehilfen für den Formeleditor unterhalb des Eingabefensters.
Damit ist das Setzen von Indizes dann verhältnismäßig  einfach, ebenso wie das Eingeben von Matrizen und Spaltenvektoren.


> Also, das Problem ist folgendes:
> Ich weiß, dass ich zeigen muss, dass die "w's"  linear
> unabhängig sind. Dazu benutze ich den Gauß?

Ja.

>  Um nun zu zeigen, das die "v's" ebenfalls eine Basis von U
> sind, muss ich doch nichts weiter tun,als zu zeigen,dass
> sie ebenfalls lin. unabhängig sind, richtig? Muss ich da
> sonst noch etwas weiteres tun?

Wenn Du nur zeigst, daß sie linear unabhängig sind, ist das noch nicht sehr aussagestark. Damit weißt Du dann, daß sie einen vierdimensionalen Unterraum aufspannen, aber ob es U ist, weiß man damit noch nicht.

Du mußt ja noch zeigen, daß sie U erzeugen.


>  Wenn ich nun also die "w's" als Matrix den "v's" als
> Matrix gleichsetze, welche der beiden muss ich dann zur
> Einheitsmatrix machen, um auf S zu kommen? (Das habe ich
> noch nie verstanden)

Die rechte.

Gruß v. Angela

Bezug
                
Bezug
Basiswechsel einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Sa 01.03.2008
Autor: tibbery

Danke für die schnelle Antwort Angela!

Also, ich habs mal so rum probiert und die "rechte" seite zur Einheitsmatrix gemacht. Das stellte sich als ziemlich schwierig heraus, denn die Werte schnellen schnurstracks in die Höhe.
Meine Alternative dazu wäre jetzt: Ich bringe die linke seite (also die "w's" ) auf En und dann steht rechts die Inverse von S. Ist das korrekt? Geht nämlich viel einfacher ;)

Zum Vektorraum U: Reicht es, wenn ich beide Matrixen simultan in Stufenform bringe? (und was sagt mir das dann? wann bilden sie denn nun einen Verktorraum?)

Vielen Dank nochmal,

Juliane

Bezug
                        
Bezug
Basiswechsel einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Sa 01.03.2008
Autor: angela.h.b.


> so, ich habs mal so rum probiert und die "rechte" seite
> zur Einheitsmatrix gemacht. Das stellte sich als ziemlich
> schwierig heraus, denn die Werte schnellen schnurstracks in
> die Höhe.
>  Meine Alternative dazu wäre jetzt: Ich bringe die linke
> seite (also die "w's" ) auf En und dann steht rechts die
> Inverse von S. Ist das korrekt? Geht nämlich viel einfacher
> ;)

Hallo,

ja, so kannst Du das machen.

>  
> Zum Vektorraum U: Reicht es, wenn ich beide Matrixen
> simultan in Stufenform bringe? (und was sagt mir das dann?
> wann bilden sie denn nun einen Verktorraum?)

Hierzu sage ich nur etwas, wenn ich's sehe. Die Gefahr von Mißverständnissen ist mir sonst zu groß.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de