www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Bedingte Wahrscheinlichkeit
Bedingte Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingte Wahrscheinlichkeit: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:21 Do 26.02.2009
Autor: nunu

Hallo
Ich habe ein kleines Problem und zwar soll ich eine Aufgabe zur bedingten Warhscheinlichkeit lösen, ich kann aber keine Wirkliche Formel aufstellen Baumdiagramm usw zeichen kein Porblem.
Es geht um folgende AUfgabe:
Bei der Warenausgabe einer Fabrik, die Elektronikbauteile fertigt, werden Kontrollmessungen durchgeführt. Bauteile die nicht vollständigt funtkionstüchtig sind, werden zu 95% als solche erkannt, allerdings kommt es auch in 2% der Fälle vor, dass wegen MEssfehlern funktionstüchtige Bauteile irrtürmlich als nicht funktionstüchtig angezeigt werden.
90% der produzierten BAuteile sind in Ordnung

Ein zufällig herausgegriffenes Bauteil wird als "fehlerhaft" angezeigt. Mit welche Wahrscheinlichkleit ist es tatsächlich nicht zu brauchen.

Kann mir bitte jemand helfen daraus eine Formel zu formulieren.
Danke schonmla im vorraus

        
Bezug
Bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Do 26.02.2009
Autor: barsch

Hi,

Wenn du den Baum gemalt hast, und die Formel für bedingte Wkt (Bayes-Formel) dir bekannt ist, dürfte es doch nicht mehr schwer sein, oder?!

Ich verwende jetzt einfach mal die folgenden Bezeichnungen:

[mm] D\math{:=} [/mm] Bauteil defekt,

[mm] \overline{D}:= [/mm] Bauteil nicht defekt/in Ordnung

Das sind die beiden ersten Äste (weiß nicht, ob die Bezeichnug Ast die Richtige ist)

Die Wkt. für [mm] $P(D),P(\overline{D})$ [/mm] kannst du der Aufgabenstellung entnehmen. Es ist [mm] P(\overline{D})=90\% [/mm] - was bedeutet das für $P(D)$ ?


Für die nächsten Äste nehmen wir einmal die folgenden Bezeichnungen:

[mm] f\math{:=} [/mm] als funktionstüchtig erkannt

[mm] \overline{f}:= [/mm] als nicht funktionstüchtig (also fehlerhaft) erkannt

Jetzt kannst du der Aufgabenstellung die folgenden Wkt. entnehmen:

[mm] P(\overline{f}|D) [/mm] - Daraus kannst du die Wkt $P(f|D)$ ableiten.

[mm] P(\overline{f}|\overline{D}) [/mm] - Was ergibt sich also für [mm] P(f|\overline{D})? [/mm]

Wenn du diese Informationen der Aufgabenstellung entnommen hast, kannst du erst die Frage klären,

> Ein zufällig herausgegriffenes Bauteil wird als "fehlerhaft" angezeigt. Mit welche Wahrscheinlichkleit ist es tatsächlich nicht zu brauchen.

Das bedeutet, die Wkt. [mm] $P(\overline{D}|f)$ [/mm] ist gesucht.

Es gilt doch [mm] P(\overline{D}|f)=\bruch{P(\overline{D}\cap{f})}{P(f)} [/mm]

[mm] \red{\text{neu:}} [/mm]

[mm] P(\overline{D}\cap{f}) [/mm] kannst du so ausdrücken: [mm] P(\overline{D}\cap{f})=P(f|\overline{D})*(P(\overline{D}) [/mm]

Und diese Wahrscheinlichkeiten kannst du alle der Aufgabenstellung entnehmen.

[mm] \red{\text{Ende: neu}} [/mm]

Hilft dir das weiter? - Ich hoffe nicht, dass du jetzt mit den Bezeichnungen durcheinander kommst, da du sicher andere gewählt hast als ich.

Ansonsten würde ich es einmal mit einer Vierfeldertafel versuchen.

Wenn es noch Probleme gibt, melde dich einfach noch mal.

MfG barsch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de