www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Bedingungen einer Norm
Bedingungen einer Norm < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingungen einer Norm: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:46 Mi 12.03.2014
Autor: MeineKekse

Aufgabe
Sei I eine nichtleere Teilmenge von [mm] \IR [/mm] und [mm] x_0 \in [/mm] I. Man betrachte den Vektorraum aller Abbildungen f: I [mm] \to \IR [/mm] (punktweise Operation) und daruf die Abbildung
[mm]||f|| := |f(x_0)| \in \IR. [/mm]

Unter welchen Bedingungen an I ist das eine Norm?


Hi,

also folgendes gilt:

N2  [mm]||\lambda f|| = |\lambda f(x_0)| = |\lambda| |f(x_0)| = |\lambda| ||f|| [/mm]

und N3

[mm]||f+g|| = |f(x_0) + g(x_0)| \le |f(x_0)| + |g(x_0)| = ||f|| + ||g|| [/mm]

so nun zu N1. Es muss gelten ||f|| = 0 gdw. wenn f = 0, also die Nullabbildung richtig?

da aber in der Definition von ||f|| nur ein Punkt [mm] x_0 [/mm] überprüft wird. Kann ich ja aus [mm] f(x_0) [/mm] = 0 nur dann darauf schließen, dass f eine Nullabildung ist, wenn I einelementig ist? Leider bin ich mir aber unsicher und weiß nicht, ob ich hier den richtigen Ansatz verfolge...

Ich würde mich über Hilfe freuen
MfG
MeineKekse

        
Bezug
Bedingungen einer Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 01:21 Do 13.03.2014
Autor: Marcel

Hallo MeineKekse,

> Sei I eine nichtleere Teilmenge von [mm]\IR[/mm] und [mm]x_0 \in[/mm] I. Man
> betrachte den Vektorraum aller Abbildungen f: I [mm]\to \IR[/mm]
> (punktweise Operation) und daruf die Abbildung
> [mm]||f|| := |f(x_0)| \in \IR. [/mm]
>  
> Unter welchen Bedingungen an I ist das eine Norm?
>  
> Hi,
>  
> also folgendes gilt:
>  
> N2  [mm]||\lambda f|| = |\lambda f(x_0)| = |\lambda| |f(x_0)| = |\lambda| ||f|| [/mm]
>  
> und N3
>  
> [mm]||f+g|| = |f(x_0) + g(x_0)| \le |f(x_0)| + |g(x_0)| = ||f|| + ||g|| [/mm]

[ok] (Bei letzterem hast Du auch $(f + [mm] g)(x_0):=f(x_0)+g(x_0)$ [/mm] gebraucht!)

> so nun zu N1. Es muss gelten ||f|| = 0 gdw. wenn f = 0,
> also die Nullabbildung richtig?

Richtig. Wobei hier ja klar ist:

Aus [mm] $f=0\,$ [/mm] folgt [mm] $f(x_0)=0$ [/mm] und damit auch [mm] $\|f\|=0\,.$ [/mm] Bleibt also noch zu gucken,
ob wir eine Bedingung für die umgekehrte Folgerung [mm] ($\|f\|=0$ $\Rightarrow$ $f=0\,$) [/mm] benötigen!

> da aber in der Definition von ||f|| nur ein Punkt [mm]x_0[/mm]
> überprüft wird. Kann ich ja aus [mm]f(x_0)[/mm] = 0 nur dann
> darauf schließen, dass f eine Nullabildung ist, wenn I
> einelementig ist? Leider bin ich mir aber unsicher und
> weiß nicht, ob ich hier den richtigen Ansatz verfolge...

Ich sehe das genauso wie Du: Sei [mm] $\|f\|=0\,.$ [/mm] Wir wollen daraus schon schließen,
dass dann für $f [mm] \colon [/mm] I [mm] \to \IR$ [/mm] schon $f(x) [mm] \stackrel{I}{\equiv} [/mm] 0$ gilt.

Aus [mm] $\|f\|=0$ [/mm] können wir aber nur [mm] $|f(x_0)|=f(x_0)=0$ [/mm] folgern. Also muss, weil $I [mm] \not=\varnothing$ [/mm]
gelten muss, dann [mm] $I=\{x_0\}$ [/mm] gelten.

(Falls noch jemand an diesem Beweis zweifelt: Ist $y [mm] \in [/mm] I [mm] \setminus \{x_0\}$ [/mm] wählbar,
so definiere man

    $g [mm] \colon [/mm] I [mm] \to \IR$ [/mm]

mit $g(x) [mm] \stackrel{I \setminus \{y\}}{;\equiv}0$ [/mm] und [mm] $g(y):=1\,.$ [/mm]

Dann ist $g [mm] \colon [/mm] I [mm] \to \IR$ [/mm] mit [mm] $\|g\|=0\,,$ [/mm] obwohl $g(x) [mm] \stackrel{I}{\not\equiv}0\,.$ [/mm]

Für [mm] $\varnothing \not= [/mm] I [mm] \not= \{x_0\}$ [/mm] können wir also eine Abbildung $I [mm] \to \IR$ [/mm] definieren,
bei der, wenn man [mm] $\|.\|$ [/mm] auf sie anwendet, Null herauskommt, obwohl diese
Abbildung nicht die auf [mm] $I\,$ [/mm] identische Nullabbildung ist!)

Gruß,
  Marcel

Bezug
                
Bezug
Bedingungen einer Norm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:18 Do 13.03.2014
Autor: MeineKekse

super,

Vielen Dank
MeineKekse

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de