www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Bedingungen für Nullfolgen
Bedingungen für Nullfolgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingungen für Nullfolgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 Do 22.11.2012
Autor: sokratesius

Aufgabe
Entscheiden Sie (Beweis oder Gegenbeispiel), ob [mm] (a_n)_{n∈N} [/mm] eine Nullfolge ist,
falls es zu jedem ε > 0 ein [mm] n_0 [/mm] ∈ N gibt, so dass für alle [mm] n\geq n_0 [/mm] gilt:
[mm] |(a_n)^2+2an|\leq [/mm] ε

Wie gehe ich da ran? Da ich keine Aussagen über die einzelnen Folgenglieder treffen kann, kann ich ja schlecht gegen [mm] |(a_n)^2| [/mm] und dann gegen [mm] |a_n| [/mm] abschätzen, da ich ja nicht weiß, was das [mm] 2a_n [/mm] noch tut...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Bedingungen für Nullfolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Do 22.11.2012
Autor: fred97


> Entscheiden Sie (Beweis oder Gegenbeispiel), ob
> [mm](a_n)_{n∈N}[/mm] eine Nullfolge ist,
>  falls es zu jedem ε > 0 ein [mm]n_0[/mm] ∈ N gibt, so dass für

> alle [mm]n\geq n_0[/mm] gilt:
>  [mm]|(a_n)^2+2an|\leq[/mm] ε
>  Wie gehe ich da ran? Da ich keine Aussagen über die
> einzelnen Folgenglieder treffen kann, kann ich ja schlecht
> gegen [mm]|(a_n)^2|[/mm] und dann gegen [mm]|a_n|[/mm] abschätzen, da ich ja
> nicht weiß, was das [mm]2a_n[/mm] noch tut...
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Vorweg: unter obiger Vor. ist [mm] (a_n) [/mm] i.a. keine Nullfolge.

Aus der Bedingung

  zu jedem ε > 0 gibt es  ein $ [mm] n_0 [/mm] $ [mm] \in \IN, [/mm] so dass für alle $ [mm] n\geq n_0 [/mm] $ gilt:  [mm] |(a_n)^2+2a_n|\leq [/mm]  ε

folgt dass [mm] b_n:=a_n^2+2a_n [/mm] eine Nullfolge ist.

Suche also eine Folge [mm] (a_n) [/mm] für die [mm] (b_n) [/mm] eine Nullfolge ist, aber so, dass [mm] (a_n) [/mm] keine Nullfolge ist.

Konstanter Gruß von FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de