Begriff gesucht < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:18 Mi 17.04.2013 | Autor: | tobit09 |
Hallo zusammen!
Sei $M$ ein metrischer Raum. Gibt es schon einen Begriff für folgende Eigenschaft, die $M$ zukommen oder nicht zukommen kann:
Für $M$ gilt der Satz von Heine-Borel in der Form, dass jede abgeschlossene beschränkte Teilmenge von $M$ bereits kompakt ist.
(Diese Eigenschaft gilt z.B. für $M$ kompakt oder für $M$ endlich-dimensionaler normierter Raum.)
(Ich möchte diese Eigenschaft nur im Spezialfall $M$ vollständig betrachten. Dann ist sie äquivalent zu: "Jede beschränkte Teilmenge von $M$ ist bereits totalbeschränkt." Also falls jemand einen Begriff für diese Eigenschaft kennt, ist mein Problem ebenso gelöst!)
Ein englischer Begriff für diese Eigenschaft würde dem ganzen noch die Krone aufsetzen!
Viele Grüße
Tobias
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:06 Mi 17.04.2013 | Autor: | tobit09 |
Hallo nochmal,
die Frage hat sich schon erledigt: Am gebräuchlichsten scheint der Name "Heine-Borel property" für diese Eigenschaft zu sein. Irgendwie naheliegend...
(Daneben bin ich auf "Heine-Borel" sowie "Borel compact" als Adjektive für einen Raum mit dieser Eigenschaft gestoßen.)
Viele Grüße
Tobias
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:13 Mi 17.04.2013 | Autor: | M.Rex |
Hallo
> Hallo nochmal,
>
> die Frage hat sich schon erledigt: Am gebräuchlichsten
> scheint der Name "Heine-Borel property" für diese
> Eigenschaft zu sein. Irgendwie naheliegend...
>
> (Daneben bin ich auf "Heine-Borel" sowie "Borel compact"
> als Adjektive für einen Raum mit dieser Eigenschaft
> gestoßen.)
Borel-Kompakt sagt mir auch noch was, diesen Begriff habe ich mal irgendwann aufgeschnappt.
>
> Viele Grüße
> Tobias
Marius
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:16 Do 18.04.2013 | Autor: | Marcel |
Hallo Tobias,
ich hab' jetzt gerade auch mal gestöbert:
> Hallo zusammen!
>
>
> Sei [mm]M[/mm] ein metrischer Raum. Gibt es schon einen Begriff für
> folgende Eigenschaft, die [mm]M[/mm] zukommen oder nicht zukommen
> kann:
>
> Für [mm]M[/mm] gilt der Satz von Heine-Borel in der Form, dass jede
> abgeschlossene beschränkte Teilmenge von [mm]M[/mm] bereits kompakt
> ist.
>
> (Diese Eigenschaft gilt z.B. für [mm]M[/mm] kompakt oder für [mm]M[/mm]
> endlich-dimensionaler normierter Raum.)
>
> (Ich möchte diese Eigenschaft nur im Spezialfall [mm]M[/mm]
> vollständig betrachten. Dann ist sie äquivalent zu: "Jede
> beschränkte Teilmenge von [mm]M[/mm] ist bereits totalbeschränkt."
> Also falls jemand einen Begriff für diese Eigenschaft
> kennt, ist mein Problem ebenso gelöst!)
>
> Ein englischer Begriff für diese Eigenschaft würde dem
> ganzen noch die Krone aufsetzen!
für Vektorräume nennt man das anscheinend manchmal auch einfach
"Heine-Borel-Eigenschaft" (klick!), ich würde das Ganze auch tatsächlich
"Heine-Borel-Kompaktheit" nennen. Was spricht eigentlich dagegen, dem Ganzen einfach
selbst nochmal einen Namen zu geben? (Du kannst ja erwähnen, dass es in anderer Literatur
auch unter den von Dir gefundenen Bezeichnungen zu finden ist). Sowas wie:
"Wir nennen einen metrischen Raum [mm] $(M,d)\,$ [/mm] Heine-Borel kompakt-charakterisierbar, falls..."
(Und dann halt dazuschreiben: In der gängigen Literatur findet man auch den Begriff ...)
Ist jetzt nicht unbedingt die tollste Idee, aber vielleicht findest Du ja selbst noch eine schöne(re)
Bezeichnung?
P.S. Im Englischen sagt man anscheinend tatsächlich "A metric space has the Heine-Borel property"!
(siehe hier!)
(Edit: Ich hatte wohl schon vergessen, dass Du das eh selbst rausgefunden hattest ^^ Manchmal
sollte ich erst nochmal lesen, was Du selbst in der Mitteilung noch geschrieben hast!)
Gruß,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 04:57 Fr 19.04.2013 | Autor: | tobit09 |
Hallo Marcel,
danke für deinen Beitrag! Ich sehe keinen Grund, der gegen die Verwendung des naheliegenden Namens "Heine-Borel property" spricht.
Viele Grüße
Tobias
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:47 So 21.04.2013 | Autor: | Marcel |
Hi Tobi,
> Hallo Marcel,
>
> danke für deinen Beitrag! Ich sehe keinen Grund, der gegen
> die Verwendung des naheliegenden Namens "Heine-Borel
> property" spricht.
ich auch nicht - war ja nur ein Vorschlag! (Warum nicht selbst ein wenig
kreativ werden und Bezeichnungen erfinden?!)
Gruß,
Marcel
|
|
|
|