www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Beispiel Normalisator
Beispiel Normalisator < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beispiel Normalisator: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:49 Mo 18.11.2013
Autor: Topologe

Aufgabe
Finden Sie ein Beispiel, in dem [mm] \{g \in G | gHg^{-1} \subseteq H \} [/mm] eine echte Obermenge von [mm] N(H)=\{g \in G | gHg^{-1} = H \} [/mm] ist und beweisen Sie, dass diese Menge in jedem solchen Fall keine Untergruppe von G ist.

Hallo :-)

Habe leider Probleme hier ein Beispiel zu finden. Hat jemand vllt eine Idee hierzu?

LG,
Topologe

        
Bezug
Beispiel Normalisator: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Di 19.11.2013
Autor: felixf

Moin Topologe,

> Finden Sie ein Beispiel, in dem [mm]\{g \in G | gHg^{-1} \subseteq H \}[/mm]
> eine echte Obermenge von [mm]N(H)=\{g \in G | gHg^{-1} = H \}[/mm]
> ist und beweisen Sie, dass diese Menge in jedem solchen
> Fall keine Untergruppe von G ist.

wenn $H$ endlich ist, geht das schonmal nicht: dann folgt aus $g H [mm] g^{-1} \subseteq [/mm] H$ bereits $g H [mm] g^{-1} [/mm] = H$. Und wenn $G$ kommutativ ist, dann ist eh immer $g H [mm] g^{-1} [/mm] = H$.

Du suchst also eine unendliche nicht-kommutative Gruppe. Was kennst du da fuer Beispiele?

LG Felix


Bezug
                
Bezug
Beispiel Normalisator: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:01 Mi 20.11.2013
Autor: hippias

In Ergaenzung zu Felix' Bemerkung: Das $g$ sollte auch keine endliche Ordnung besitzen.

Ich denke so: Nimm eine unendliche Gruppe $G$ und einen Automorphismus [mm] $\alpha$ [/mm] dazu. Daraus laesst sich mittels des semidirekten Produktes immer eine Gruppe bilden, die $G$ und [mm] $\alpha$ [/mm] enthaelt. Darueberhinaus ist in dem semidirekten Produkt immer [mm] $\alpha^{-1}g\alpha= \alpha(g)$, $g\in [/mm] G$. Also sollte $H$ einfach eine [mm] $\alpha$-invariante [/mm] Untergruppe von $G$ sein.

Damit die Automorphismengruppe nicht zu aermlich ist, waehle nicht $G= [mm] (\IZ,+)$, [/mm] sondern eher $G= [mm] (\IQ,+)$. [/mm] Vielleicht ist [mm] $x^{\alpha}= [/mm] 2x$ ein guter Automorphismus. Jetzt muesste man noch [mm] $H\leq [/mm] G$ geschickt waehlen, damit [mm] $H^{\alpha}< [/mm] H$ ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de