www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Beispiel für den linearen Code
Beispiel für den linearen Code < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beispiel für den linearen Code: Linearer Code [5, 2]
Status: (Frage) beantwortet Status 
Datum: 00:26 Di 17.12.2013
Autor: NiklasKlause

Hallo,

lerne grade für eine Prüfung und will etwas klar stellen. Die Generatormatrix hat die folgende Form

G = [mm] (I_{k}|A_{n - k}) [/mm]

Man soll ein Beispiel für den linearen Code C [5, 2] angeben.

Zuerst beginne ich mit der Generatormatrix

G = [mm] \pmat{ 1 & 0 & x & x & x \\ 0 & 1 & x & x & x} [/mm]

Darf ich alle x´s durch belibiege Zahlen (in [mm] \IZ_{2}) [/mm] ersetzten? Wenn ja, dann G ist meine Generatormatrix

G = [mm] \pmat{ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1} [/mm]

Mit dieser Matrix "kodiere" ich die Nachricht "01" und erhalte anschließend

das Codewort (0 1) * [mm] \pmat{ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1} [/mm] = 01101

Dann ist die Kontrollmatrix H = [mm] \pmat{ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1}. [/mm] Um nun zu prüfen, ob alles stimmt, multipliziere ich das Codewort mit der Kontrollmatrix. Dabei soll 0 rauskommen.

[mm] \pmat{ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1} [/mm] * [mm] \pmat{ 0 & 1 & 1 & 0 & 1}^{T} [/mm] = (0 0 0).

So weit, so gut! Es muss alles stimmen. Oder? Ist das ein korrektes Beispiel für den linearen Code [5, 2] in  [mm] \IZ_{2}? [/mm]

P.S. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beispiel für den linearen Code: Antwort
Status: (Antwort) fertig Status 
Datum: 08:49 Di 17.12.2013
Autor: felixf

Moin!

> lerne grade für eine Prüfung und will etwas klar stellen.
> Die Generatormatrix hat die folgende Form
>  
> G = [mm](I_{k}|A_{n - k})[/mm]

In systematischer Form, ja.

> Man soll ein Beispiel für den linearen Code C [5, 2]
> angeben.
>  
> Zuerst beginne ich mit der Generatormatrix
>
> G = [mm]\pmat{ 1 & 0 & x & x & x \\ 0 & 1 & x & x & x}[/mm]
>  
> Darf ich alle x´s durch belibiege Zahlen (in [mm]\IZ_{2})[/mm]
> ersetzten?

Wenn du neben Dimension und Laenge keine weiteren Ansprueche an den Code stellst, ja.

> Wenn ja, dann G ist meine Generatormatrix
>
> G = [mm]\pmat{ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1}[/mm]
>  
> Mit dieser Matrix "kodiere" ich die Nachricht "01" und
> erhalte anschließend
>
> das Codewort (0 1) * [mm]\pmat{ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1}[/mm]
> = 01101
>  
> Dann ist die Kontrollmatrix H = [mm]\pmat{ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1}.[/mm]
> Um nun zu prüfen, ob alles stimmt, multipliziere ich das
> Codewort mit der Kontrollmatrix. Dabei soll 0 rauskommen.
>  
> [mm]\pmat{ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1}[/mm]
> * [mm]\pmat{ 0 & 1 & 1 & 0 & 1}^{T}[/mm] = (0 0 0).
>  
> So weit, so gut! Es muss alles stimmen. Oder?

Nun, um das noch etwas genauer zu ueberpruefen kannst du Kontroll- mit Generatormatrix multiplizieren. Also $H [mm] G^T$ [/mm] muss ebenfalls gleich 0 sein.

> Ist das ein
> korrektes Beispiel für den linearen Code [5, 2] in  

Nicht fuer den, sondern fuer einen. Es gibt viele binaere $[5, 2]$-Codes.

> [mm]\IZ_{2}?[/mm]

Ja.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de