www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Beispiel zum Satz von Fatou
Beispiel zum Satz von Fatou < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beispiel zum Satz von Fatou: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:36 Di 11.11.2003
Autor: ministel

Wir sollen in einer Aufgabe beweisen, dass beim Satz von Fatou auch die strikte Ungleichheit gelten kann.
Nahegelegt wurden uns die Funktionen [mm]f_n (x) := \frac{n}{1+n^2x^2} , x \in \IR, n \in \IN[/mm]

Problem ist, dass ich da nicht mal dran rumprobieren kann, weil ich als Definition des lim inf nur mal gelernt hab:
[mm] \lim inf_{x\rightarrow\ x_0} f_n (x) := \lim_{\epsilon\rightarrow\ 0+} (inf \{f_n (x) : 0 < |x - x_0| < \epsilon , x \in D\}) [/mm]
Wobei dann [mm]x_0[/mm] Häufungspunkt ist. Der Satz von Fatou aber geht ja nach unendlich, sodass ich da gar nicht weiß, wie ich da den Limes inferior bestimmen soll.
Und zudem weiß ich nun auch nicht, was mein Intervall ist, über das integriert wird.

Bin also echt völlig ratlos.

Und ich weiß nicht, obs resultierend aus dieser Blockade oder es wirklich nicht so leicht ist, aber: Stammfunktion von [mm]e^{-x^2}[/mm]? :\

        
Bezug
Beispiel zum Satz von Fatou: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Di 11.11.2003
Autor: Stefan

Hallo Ministel,

also erst einmal zur zweiten Frage: [mm]e^{-x^2}[/mm] hat keine geschlossene Stammfunktion (schade eigentlich, denn dann bräuchte man keine Normalverteilungstabellen). ;-) Du musst die Aufgabe anders lösen, ich habe sie mir bereits angeschaut. Wenn du wissen willst, wie, dann melde dich einfach.

So, jetzt zu deiner Aufgabe: Der Limes inferior einer Funktionenfolge ist einfach der (punktweise erklärte) kleinste Häufungspunkt der Folge. Also: Ist [mm](f_n)_{n \in \IN}[/mm] eine Funktionenfolge, dann gilt:

[mm](\liminf\limits_{n \to \infty} f_n)(x) \stackrel{\mbox{\scriptsize def}}{=} \liminf\limits_{n \to \infty} [f_n(x)].[/mm]

Also: Wähle dir x fest und bestimmt für dieses x den kleinsten Häufungspunkt der Folge [mm](f_n(x))_{n \in \IN}[/mm]. Mache dies mit jedem x. Die sind daraus ergebende Folge nenne [mm]\liminf\limits_{n\to \infty} f_n[/mm]. Insbesondere gilt: Wenn für alle x die Folge [mm](f_n(x))_{n \in \IN}[/mm] konvergiert, dann ist einfach

[mm] (\liminf\limits_{n \to \infty} f_n)(x) = \lim\limits_{n\to \infty} f_n(x)[/mm].

So, jetzt bilden wir mal den Limes inferior der von deinem Assistenten vorgeschlagenen Funktionenfolge. Für festes x konvergiert die zu betrachtende Folge aber gegen 0, d.h. es gilt:

[mm] \liminf\limits_{n\to\infty} \frac{n}{1+n^2x^2} = 0[/mm],

also:

[mm]\int_{\IR} \liminf\limits_{n\to\infty} \frac{n}{1+n^2x^2} \, dx= \int_{\IR} 0 \, dx = 0[/mm].

Nun berechnen wir umgekehrt:

[mm]\liminf\limits_{n\to\infty} \int_{\IR} \frac{n}{1+n^2x^2} \, dx[/mm].

Für festes n gilt (Substitution [mm]x \mapsto nx[/mm], überprüfe das bitte, ich bim schwach im "Integrale konkret berechnen" ;-)):

[mm] \int_{\IR} \frac{n}{1+n^2x^2} \, dx= \int_{\IR} \frac{1}{1+x^2}\, dx = \lim\limits_{N\to \infty} (\arctan(N)-\arctan(-N)) = \pi,[/mm]

also auch:

[mm]\liminf\limits_{n\to\infty} \int_{\IR} \frac{n}{1+n^2x^2} \, dx = \pi.[/mm]

Wir erhalten also:

[mm]\int_{\IR} \liminf\limits_{n\to\infty} \frac{n}{1+n^2x^2} dx = 0 < \pi = \liminf\limits_{n\to\infty} \int_{\IR} \frac{n}{1+n^2x^2} \, dx[/mm]

also eine echte Ungleichung in dem Satz von Fatou.

Bei Fragen: Melde dich.

Alles Gute
Stefan



Nachricht bearbeitet (Di 11.11.03 15:49)

Bezug
                
Bezug
Beispiel zum Satz von Fatou: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:23 Mi 12.11.2003
Autor: ministel

Hmm, einleuchtend. :)

(Was mir grad hierbei einfällt: Wäre es irgendwie möglich, sowas wie ne "Druckansicht" einzurichten? Also gerne, gerne würd ich mir das jetzt ausdrucken, weil ich ungern vorm Bildschirm sitze und das alles abschreibe, das mach ich lieber vom Blatt, aber wenn ich das drucke, hab ich halt echt die komplette Seite aufm Papier.)

Zu der anderen Aufgabe mit dem exp(-x²) bräucht ich doch nochmal Hilfe. Falls das jetzt aber nicht mehr zu schaffen ist, ists auch ok. Bin ja selbst schuld, dass ich das immer auf den letzten Drücker mache. ;)

Bezug
                        
Bezug
Beispiel zum Satz von Fatou: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:28 Do 13.11.2003
Autor: Stefan

Hallo ministel,

zunächst einmal folgt:

[mm]F'(t) + G'(t) = 2\left(\int_0^t e^{-x^2}\, ds \right) \cdot e^{-t^2} + \int_0^1 e^{-t^2(1+x^2)}\, (-2t)\, dx = 2\left(\int_0^t e^{-x^2}\, dx \right) \cdot e^{-t^2} + \int_0^1 e^{-t^2-t^2\, x^2}\, (-2t)\, dx[/mm]

Führt man nun noch im zweiten Integral die (rückwärts angewandte) Substitution [mm]\varphi(x)=tx[/mm] durch, so erhält man:

[mm]F'(t) + G'(t) = 2\left(\int_0^t e^{-x^2}\, dx \right) \cdot e^{-t^2} + \int_0^t e^{-t^2-x^2}\, (-2)\, dx = 0[/mm].

Daraus folgt: G+F ist konstant, also insbesondere:

[mm]G(t) + F(t) = G(0) + F(0) = \int_0^1 \frac{1}{1+x^2}\, dx = \arctan(1) - \arctan(0) = \frac{\pi}{4}.[/mm].

Dann ist aber auch:

[mm]\frac{\pi}{4} = \lim\limits_{t \to \infty} \left(F(t) - G(t) \right).[/mm]

Es gilt (verwende den Satz von der dominierten Konvergenz, die Majorante wird durch [mm]\frac{1}{1+x^2}[/mm] gegeben!):

[mm] \lim\limits_{t \to \infty} G(t) = \lim\limits_{t \to \infty} \int_0^1 \frac{e^{-t^2(1+x^2)}}{1+x^2}\, dx = \int_0^1 \lim\limits_{t \to \infty} \frac{e^{-t^2(1+x^2)}}{1+x^2}\, dx = \int_0^1 0\, dx = 0.[/mm]

Es folgt also:

[mm]\frac{\pi}{4} = \lim\limits_{t \to \infty} F(t) = \left(\int_0^{\infty} e^{-x^2}\, dx\right)^2.[/mm]

Dies führt nun zu (beachte die Symmetrie):

[mm] \int_{-\infty}^{\infty} e^{-x^2}\, dx = 2 \cdot \int_0^{\infty} e^{-x^2}\, dx = 2 \cdot \sqrt{\frac{\pi}{4}} = \sqrt{\pi}.[/mm]

Liebe Grüße
Stefan


Bezug
                        
Bezug
Beispiel zum Satz von Fatou: Druckansicht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:41 Fr 14.11.2003
Autor: Marc

Hallo ministel,

> (Was mir grad hierbei einfällt: Wäre es irgendwie möglich,
> sowas wie ne "Druckansicht" einzurichten? Also gerne, gerne
> würd ich mir das jetzt ausdrucken, weil ich ungern vorm
> Bildschirm sitze und das alles abschreibe, das mach ich lieber
> vom Blatt, aber wenn ich das drucke, hab ich halt echt die
> komplette Seite aufm Papier.)

da eine Druckansicht vor kurzem schon mal gewünscht wurde, habe ich es jetzt einfach mal programmiert, ich hoffe, es gefällt dir. Falls nicht, wäre ich für Verbesserungsvorschläge dankbar.

Viele Grüße,
Marc


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de