Beispiele / Problemstellungen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:12 Sa 21.06.2008 | Autor: | Irmchen |
Guten Abend!
Ich bearbeite zu Zeit einige Beispiele zu verschiedenen Problemstellungen nach und verstehe dabei eine Bemerkung nicht 100%ig!
So, erstmal zu den beiden Beispielen, auf die sich die Bemerkung bezieht.
Beispiel 1 :
Sei J ein offenes Intervall in [mm] \mathbb R [/mm] und [mm] U = J \times \mathbb R \subseteq \mathbb R^2 [/mm].
Sei [mm] g : J \to \mathbb R [/mm] eine stetige Funktion. Definiere
[mm] f : U \to \mathbb R [/mm] durch [mm] f (x,y) := g(x) [/mm].
Dass [mm] \phi : I \to \mathbb R [/mm] eine Lösung von
[mm] y' = f (x,y) = g(x) [/mm] ist, bedeutet:
a) [mm] I \subseteq J [/mm]
b) Für alle [mm] x \in I [/mm] ist [mm] \phi '(x) = g(x) [/mm].
In diesem Fall ist eine Lösung eine Stammfunktion von [mm] g \mid I [/mm].
Also gibt es unendlich viele Lösungen, die sich alle um eine additive Konstante unterscheiden.
Beispiel 2 :
Definiere [mm] f: \mathbb R^2 \to \mathbb R [/mm] durch [mm] f (x,y ) := y [/mm] , d.h. betrachte die Differentialgleichung
[mm] y ' = y [/mm].
Für [mm] c \in \mathbb R [/mm] sei [mm] \phi_c : \mathbb R \to \mathbb R [/mm] definiert durch [mm] \phi_c (x) := c \cdot \exp(x) [/mm] .
Dann ist [mm] \phi_c [/mm] Lösung von [mm] y ' = y [/mm].
Bemerkung :
Im Beispiel 1 und 2 gibt es für jedes [mm] (x_0 , y_0 ) [/mm] genau eine Lösung mit der Anfangsbedingung [mm] \phi (x_0 ) = y_0 [/mm] , deren Definitionsbereich maximal ist.
So, meine Frage bezieht sich auf die Bemerkung.
Warum gibt es genau eine Lösung mit dieser Anfangsbedingung und was bedeutet denn genau max. Definitionsbereich? Etwa, dass ich keine Bedingung an das x stelle und somit alles einsetzen kann?
Vielen Dank im voraus!
Viele Grüße
Irmchen
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:23 Mo 23.06.2008 | Autor: | Merle23 |
> Guten Abend!
>
> Ich bearbeite zu Zeit einige Beispiele zu verschiedenen
> Problemstellungen nach und verstehe dabei eine Bemerkung
> nicht 100%ig!
>
> So, erstmal zu den beiden Beispielen, auf die sich die
> Bemerkung bezieht.
>
> Beispiel 1 :
>
> Sei J ein offenes Intervall in [mm]\mathbb R[/mm] und [mm]U = J \times \mathbb R \subseteq \mathbb R^2 [/mm].
>
> Sei [mm]g : J \to \mathbb R[/mm] eine stetige Funktion. Definiere
> [mm]f : U \to \mathbb R[/mm] durch [mm]f (x,y) := g(x) [/mm].
> Dass [mm]\phi : I \to \mathbb R[/mm]
> eine Lösung von
> [mm]y' = f (x,y) = g(x)[/mm] ist, bedeutet:
>
> a) [mm]I \subseteq J[/mm]
> b) Für alle [mm]x \in I[/mm] ist [mm]\phi '(x) = g(x) [/mm].
>
> In diesem Fall ist eine Lösung eine Stammfunktion von [mm]g \mid I [/mm].
>
> Also gibt es unendlich viele Lösungen, die sich alle um
> eine additive Konstante unterscheiden.
>
> Beispiel 2 :
>
> Definiere [mm]f: \mathbb R^2 \to \mathbb R[/mm] durch [mm]f (x,y ) := y[/mm]
> , d.h. betrachte die Differentialgleichung
> [mm]y ' = y [/mm].
> Für [mm]c \in \mathbb R[/mm] sei [mm]\phi_c : \mathbb R \to \mathbb R[/mm]
> definiert durch [mm]\phi_c (x) := c \cdot \exp(x)[/mm] .
> Dann ist [mm]\phi_c[/mm] Lösung von [mm]y ' = y [/mm].
>
>
> Bemerkung :
>
> Im Beispiel 1 und 2 gibt es für jedes [mm](x_0 , y_0 )[/mm] genau
> eine Lösung mit der Anfangsbedingung [mm]\phi (x_0 ) = y_0[/mm] ,
> deren Definitionsbereich maximal ist.
>
> So, meine Frage bezieht sich auf die Bemerkung.
> Warum gibt es genau eine Lösung mit dieser
> Anfangsbedingung und was bedeutet denn genau max.
> Definitionsbereich? Etwa, dass ich keine Bedingung an das x
> stelle und somit alles einsetzen kann?
Hier in diesem Fall kommt die Eindeutigkeit der Lösung durch den Hauptsatz der Differential- und Integralrechnung.
Allgemein aber muss f Lipschitz-stetig sein, damit die Lösung eindeutig wird.
Maximaler Definitionsbereich bedeutet, dass die Lösung auf demselben Intervall definiert ist wie f es vorgibt.
Es kann z.B. sein, dass f auf [mm] \IR\times\IR [/mm] definiert ist (man also für jedes [mm] x\in\IR [/mm] eine Lösung suchen kann), aber die Lösung dann nur auf einem Intervall um x herum definiert ist z.B. auf [mm] (x-\epsilon,x+\epsilon) [/mm] und an den Rändern gegen Unendlich abhaut (wenn man z.B. die Differentialgleichung für den Tangens aufstellt, dann kann man diese für jeden Punkt in [mm] \IR [/mm] aufstellen, aber die Lösungen sind dann nur auf Teilintervallen definiert).
>
> Vielen Dank im voraus!
>
> Viele Grüße
> Irmchen
|
|
|
|