www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Beispiele für Vektorrechnung
Beispiele für Vektorrechnung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beispiele für Vektorrechnung: Frage
Status: (Frage) beantwortet Status 
Datum: 14:44 Di 31.05.2005
Autor: Timo17

Hi,

brauche mal eure Hilfe.

Ich suche Musterlösungen zu folgenden Themen im Bereich Vektoren:
- lineare (Un-)Abhängigkeit
- aufstellen von linearen Gleichungen (Linearkombination)
- beweisen mit Vektoren
- vektorielle Darstellung von Geraden(Ebenen):aufstellen,zeichnen ; Koordinatengleichung,Paramtergleichung
- gegenseitige Lage von Geraden (windschief,identisch,schneiden sich)
- Geraden und Ebenen zusammen

Wäre echt super wenn ihr mal ein,zwei Beispiele für diese Themen habt(Links?).Schreiben nämlich ne Klausur drüber.

Vielen Dank im Voraus.

MfG

        
Bezug
Beispiele für Vektorrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 Di 31.05.2005
Autor: Fugre


> Hi,
>  
> brauche mal eure Hilfe.
>  
> Ich suche Musterlösungen zu folgenden Themen im Bereich
> Vektoren:
>  - lineare (Un-)Abhängigkeit
>  - aufstellen von linearen Gleichungen (Linearkombination)
>  - beweisen mit Vektoren
>  - vektorielle Darstellung von
> Geraden(Ebenen):aufstellen,zeichnen ;
> Koordinatengleichung,Paramtergleichung
>  - gegenseitige Lage von Geraden
> (windschief,identisch,schneiden sich)
>  - Geraden und Ebenen zusammen
>  
> Wäre echt super wenn ihr mal ein,zwei Beispiele für diese
> Themen habt(Links?).Schreiben nämlich ne Klausur drüber.
>  
> Vielen Dank im Voraus.
>  
> MfG

Hallo Timo,

ich habe hier ein paar Seiten gefunden, leider sind nicht alle
mit Lösung, aber du kannst auch gerne deine Lösungen bei
uns überprüfen lassen oder sie mit uns finden.
[]www.Mathe-Aufgaben.de
[]www.Strobl-F.de
[]www.Plawner.de
[]www.Munterbunt.ch
Liebe Grüße
Fugre

Bezug
                
Bezug
Beispiele für Vektorrechnung: Ein paar Fragen
Status: (Frage) beantwortet Status 
Datum: 16:03 Di 31.05.2005
Autor: Timo17

Habe da mal nen paar Fragen zur Vektorrechnung:

-Zur linearen Abhängigkeit:
Können nun zwei Vektoren kollinear sein und komplanar mehr als 2?
Wenn ich nun a(3/3/3),c(4/4/7),d(3/5/5) als Vektoren habe.Ich errechne ob sie abhängig sind , indem ich das mit Determinanten mache.Wie geht es sonst noch?

-gegenseitige Lage von Geraden:
Es gibt ja 4 verschiedene Formen:g und h sind=identisch,zueinander parallel,schneiden sich oder sind zueinander windschief.
Wenn sie sich schneiden haben sie ja einen Schnittpunkt.Dazu stelle ich ja ein lineares Gleichungssystem auf und schaue obz.B. r und s gleich sind.Dann schneiden sich die Geraden ja.Wie gehe ich denn bei den anderen drei Sachen vor bzw. wie sehe ich ob sie identisch etc. sind?

Wofür berchnet man den Durchschnittspunkt?Ich stelle ja auch hier das Gleichungssystem auf und löse nach r,s und t auf und setzte dann t in die Gleichung auf und habe dann den Durchschnittspunkt.Wie finde ich denn heraus ob es überhaupt einen Durchschnittspunkt gibt oder nicht?

Erstmal letzte Frage:
Wenn eine Gerade h vorgegeben ist,sagen wir (1/0/0)+r(7/3/1).Wie gebe ich jetzt eine andere Gerade an ,die diese Gerade h schneidet,die dazu parallel ist,die dazu windschief ist oder identisch ist.Wie bekomme ich das heraus?

Vielen Dank im Voraus.

MfG

Bezug
                        
Bezug
Beispiele für Vektorrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 Di 31.05.2005
Autor: Fugre

Hallo Timo!

> Habe da mal nen paar Fragen zur Vektorrechnung:
>  
> -Zur linearen Abhängigkeit:
>  Können nun zwei Vektoren kollinear sein und komplanar mehr
> als 2?
>  Wenn ich nun a(3/3/3),c(4/4/7),d(3/5/5) als Vektoren
> habe.Ich errechne ob sie abhängig sind , indem ich das mit
> Determinanten mache.Wie geht es sonst noch?

Wenn du überpfrüfen willst, ob zwei Vektoren [mm] $\vec [/mm] a, [mm] \vec [/mm] b$ linear
abhängig voneinander sind, so löst du sie entweder so:
(1) [mm] $\vec a=r*\vec [/mm] b$ und überprüfst, ob diese Gleichung eine
Lösung hat.
oder so:
(2) du baust eine Determinante, ist diese null so liegt eine lineare
Abhängigkeit vor.

Wenn du überprüfen willst, ob 3 Vektoren komplanar sind, also in
einer Ebene liegen, so kannst du es genauso machen:
(1) [mm] $\vec [/mm] a [mm] =r*\vec b+s*\vec [/mm] c$
oder
(2) mit der Determinante

>  
> -gegenseitige Lage von Geraden:
>  Es gibt ja 4 verschiedene Formen:g und h
> sind=identisch,zueinander parallel,schneiden sich oder sind
> zueinander windschief.
>  Wenn sie sich schneiden haben sie ja einen
> Schnittpunkt.Dazu stelle ich ja ein lineares
> Gleichungssystem auf und schaue obz.B. r und s gleich
> sind.Dann schneiden sich die Geraden ja.Wie gehe ich denn
> bei den anderen drei Sachen vor bzw. wie sehe ich ob sie
> identisch etc. sind?

$r,s$ müssen nicht gleich sein, sie müssen nur einen gemeinsamen
Punkt haben, damit sie sich schneiden.

Die Reihenfolge hilft dir manchmal Arbeit zu sparen. Berechne zunächst
die Determinante mit den beiden Richtungsvektoren [mm] $\vec [/mm] u, [mm] \vec [/mm] v$ und
dem Verbindungsvektor der Aufpunkte [mm] $\vec [/mm] a -vec b$.
Ist die Determinante [mm] $\det(\vec [/mm] u, [mm] \vec [/mm] v, [mm] \vec [/mm] a - [mm] \vec [/mm] b)$ null, so liegen
die Geraden in einer Ebene. Das bedeutet, dass sie sich entweder schneiden
oder parallel sind, ist die Determinante ungleich null, so sind die Geraden windschief.
Jetzt überprüfst du, ob sie sich schneiden.


>  
> Wofür berchnet man den Durchschnittspunkt?Ich stelle ja
> auch hier das Gleichungssystem auf und löse nach r,s und t
> auf und setzte dann t in die Gleichung auf und habe dann
> den Durchschnittspunkt.Wie finde ich denn heraus ob es
> überhaupt einen Durchschnittspunkt gibt oder nicht?

Ich vermute du meinst den Punkt an dem sich Ebene und
Gerade schneiden. Du kannst einfach überprüfen ob es einen
solche Punkt gibt, indem du überprüfst, ob die Gerade parallel
zur Ebene ist. Wenn ja, so gibt es keinen bzw. die Gerade liegt
in der Ebene.

>  
> Erstmal letzte Frage:
>  Wenn eine Gerade h vorgegeben ist,sagen wir
> (1/0/0)+r(7/3/1).Wie gebe ich jetzt eine andere Gerade an
> ,die diese Gerade h schneidet,die dazu parallel ist,die
> dazu windschief ist oder identisch ist.Wie bekomme ich das
> heraus?

Eine identische Gerade können wir ganz leicht angeben, wir
multiplizieren den Richtungsvektor mit einer beliebigen Zahl
ungleich null und schon haben wir einen neuen aber identischen
Richtungsvektor. Mit dem Aufpunktvektor ist es auch nicht besonders
schwer, denn wir können für ihn den Ortsvektor jedes Punktes der
Geraden verwenden ohne etwas zu ändern.
Beispiel hier:
$g: [mm] \vec [/mm] x= [mm] \vektor{8 \\ 3 \\ 1}+ [/mm] s [mm] \vektor{14 \\ 6 \\ 2}$ [/mm]

Wenn die andere gerade parallel sein soll, so müssen die Richtungsvektoren
linear abhängig sein.

Sollen sie windschief sein so muss die Determinante von oben [mm] ($\det(\vec [/mm] u, [mm] \vec [/mm] v, [mm] \vec [/mm] a [mm] -\vec [/mm] b)$)
ungleich null sein.

Liebe Grüße
Fugre



>  
> Vielen Dank im Voraus.
>  
> MfG

Bezug
                                
Bezug
Beispiele für Vektorrechnung: Fragen dazu
Status: (Frage) beantwortet Status 
Datum: 18:14 Di 31.05.2005
Autor: Timo17

Hi Fugre,

danke schon mal für deine überaus guten Antworten!!!

Zu meiner letzten Frage:

Das ist mir noch nicht klar geworden wie ich das jetzt berechnen kann :-(
Könntest du mal ein Beispiel für jedes der Sachen schreiben?Also parallel,windschief etc. Ich weiß nicht wie ich drauf kommen soll.Du hattest es mir zwar beantworten abe rbin nicht draus schlau geworden.

Zu meiner Frage mit den gegenseitigen Lage der Geraden:
Man hat ja dann z.B. solche Gleichung:
(5/0/1)+t(2/1/-1)=(7/1/2)+s(-6/-3/3)

Wie berechne ich das denn mit den Determinanten???

Vielen Dank im Voraus.

MfG




Bezug
                                        
Bezug
Beispiele für Vektorrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 Di 31.05.2005
Autor: Fugre


> Hi Fugre,
>  
> danke schon mal für deine überaus guten Antworten!!!
>  
> Zu meiner letzten Frage:
>  
> Das ist mir noch nicht klar geworden wie ich das jetzt
> berechnen kann :-(
>  Könntest du mal ein Beispiel für jedes der Sachen
> schreiben?Also parallel,windschief etc. Ich weiß nicht wie
> ich drauf kommen soll.Du hattest es mir zwar beantworten
> abe rbin nicht draus schlau geworden.
>  
> Zu meiner Frage mit den gegenseitigen Lage der Geraden:
>  Man hat ja dann z.B. solche Gleichung:
>  (5/0/1)+t(2/1/-1)=(7/1/2)+s(-6/-3/3)
>  
> Wie berechne ich das denn mit den Determinanten???
>  
> Vielen Dank im Voraus.
>  
> MfG
>  
>
>  

Hi Timo,

also deine Beispielaufgabe:
[mm] $g:\vec [/mm] x= [mm] \vektor{5 \\ 0 \\ 1}+t* \vektor{2 \\ 1 \\-1}$ [/mm]
[mm] $h:\vec [/mm] x= [mm] \vektor{7 \\ 1 \\ 2}+s*\vektor{-6 \\ -3 \\ 3}$ [/mm]
Jetzt können wir die Richtungsvektoren zuerst etwas vereinfachen.
Möglich ist das, weil $r,s [mm] \in \IR$ [/mm]
[mm] $g:\vec [/mm] x= [mm] \vektor{5 \\ 0 \\ 1}+t* \vektor{2 \\ 1 \\-1}$ [/mm]
Ist schon so einfach wie möglich
[mm] $h:\vec [/mm] x= [mm] \vektor{7 \\ 1 \\ 2}+s*\vektor{2 \\ 1 \\ -1}$ [/mm]

Durch die Vereinfachung können wir nun sofort erkennen,
dass die beiden Geraden parallel sind. Ist gibt also zwei
Möglichkeiten, entweder sind sie echt parallel oder identisch.
Prüfen können wir es mit der Punktprobe, wir setzen einen
der Aufpunktvektoren in die andere Gleichung ein. Liegt
dieser Punkt auf ihr, so sind sie identisch, ansonsten echt
parallel.

Überprüfen wir es:
[mm] $\vektor{5 \\ 0 \\1}=\vektor{7 \\ 1 \\ 2}+s*\vektor{2 \\ 1 \\ -1}$ [/mm]
Damit die oberste Reihe stimmt, muss $s=-1$
Damit die mittlere Reihe stimmt, muss $s=-1$
Damit die unterste Reihe stimmt, muss $s=1$


Die Folge ist, dass der Punkt nicht auf der Geraden liegt und die
beiden Geraden somit echt parallel sind.

Dieses Geradenpaar kannst du als Beispiel für echt paralle Geraden
nehmen.

Als identische Geraden:
[mm] $g:\vec [/mm] x= [mm] \vektor{5 \\ 0 \\ 3}+t* \vektor{2 \\ 1 \\-1}$ [/mm]
[mm] $h:\vec [/mm] x= [mm] \vektor{7 \\ 1 \\ 2}+s*\vektor{2 \\ 1 \\ -1}$ [/mm]

Als windschiefe Geraden:
[mm] $g:\vec [/mm] x= [mm] \vektor{5 \\ 0 \\ 3}+t* \vektor{2 \\ 5 \\-1}$ [/mm]
[mm] $h:\vec [/mm] x= [mm] \vektor{7 \\ 1 \\ 2}+s*\vektor{2 \\ 1 \\ -1}$ [/mm]

Als "schnittige" Geraden
[mm] $g:\vec [/mm] x= [mm] \vektor{1 \\ 1 \\ 1}+t* \vektor{2 \\ 3 \\ 4}$ [/mm]
[mm] $h:\vec [/mm] x= [mm] \vektor{3 \\ 4 \\ 5}+s*\vektor{4 \\ 7 \\ 8}$ [/mm]

Liebe Grüße
Fugre

Bezug
                                                
Bezug
Beispiele für Vektorrechnung: erneute Fragen
Status: (Frage) beantwortet Status 
Datum: 19:38 Di 31.05.2005
Autor: Timo17

Du hattest in deiner Antwort vorher geschrieben:

- Die Reihenfolge hilft dir manchmal Arbeit zu sparen. Berechne zunächst
die Determinante mit den beiden Richtungsvektoren $ [mm] \vec [/mm] u, [mm] \vec [/mm] v $ und
dem Verbindungsvektor der Aufpunkte $ [mm] \vec [/mm] a -vec b $.
Ist die Determinante $ [mm] \det(\vec [/mm] u, [mm] \vec [/mm] v, [mm] \vec [/mm] a - [mm] \vec [/mm] b) $ null, so liegen
die Geraden in einer Ebene. Das bedeutet, dass sie sich entweder schneiden
oder parallel sind, ist die Determinante ungleich null, so sind die Geraden windschief.
Jetzt überprüfst du, ob sie sich schneiden.

Wie rechne ich das denn mit den Determinanten aus???

- Gibt es denn nur einen Durchschnittspunkt wenn die Gerade parallel zur Ebene ist?Nicht wenn die Gerade die Ebene schneidet?

- Ok,danke.Du hast jetzt die Beispiele aufgeschrieben,aber könntest du nochmal kurz erläutern wie du bei den Beispielen darauf gekommen bist !?

Danke.






Bezug
                                                        
Bezug
Beispiele für Vektorrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Di 31.05.2005
Autor: Fugre

Hi Timo!
> Du hattest in deiner Antwort vorher geschrieben:
>  
> - Die Reihenfolge hilft dir manchmal Arbeit zu sparen.
> Berechne zunächst
>  die Determinante mit den beiden Richtungsvektoren [mm]\vec u, \vec v[/mm]
> und
>  dem Verbindungsvektor der Aufpunkte [mm]\vec a -vec b [/mm].
>  Ist
> die Determinante [mm]\det(\vec u, \vec v, \vec a - \vec b)[/mm]
> null, so liegen
>  die Geraden in einer Ebene. Das bedeutet, dass sie sich
> entweder schneiden
>  oder parallel sind, ist die Determinante ungleich null, so
> sind die Geraden windschief.
>  Jetzt überprüfst du, ob sie sich schneiden.
>  
> Wie rechne ich das denn mit den Determinanten aus???

[guckstduhier] MB Determinante


>  
> - Gibt es denn nur einen Durchschnittspunkt wenn die Gerade
> parallel zur Ebene ist?Nicht wenn die Gerade die Ebene
> schneidet?
>  

Wenn die Gerade parallel zur Ebene ist, so wird sie diese nie
schneiden, es sei denn sie liegt in ihr, da weiß ich nicht, ob dies
als schneiden bezeichnet werden darf.


> - Ok,danke.Du hast jetzt die Beispiele aufgeschrieben,aber
> könntest du nochmal kurz erläutern wie du bei den
> Beispielen darauf gekommen bist !?

Versuche erstmal die Überprüfung dieser Eigenschaften
nachzuvollziehen, wenn du sie vollständig erfasst hast, kannst
du versuchen sie umzudrehen, so kommst du dann darauf.

>  
> Danke.
>  
>
>
>
>  

Liebe Grüße
Fugre

Bezug
                                                                
Bezug
Beispiele für Vektorrechnung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:04 Di 31.05.2005
Autor: Timo17

Hi,

der Link mit den Determinanten funktioniert nicht.Kannst du mir da snicht mal bitte erklären?

MfG

Bezug
                                                                        
Bezug
Beispiele für Vektorrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Di 31.05.2005
Autor: Fugre

Hi,

ich bin der Link zur Determinante, entschuldige bitte, dass ich gerade nicht funktionierte. ;-)

Liebe Grüße
Fugre

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de