www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Berechn. Determinanten über C!
Berechn. Determinanten über C! < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechn. Determinanten über C!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Di 22.01.2008
Autor: Richi4Life

Aufgabe
Berechnen Sie die Determinanten folgender Matritzen über C:

A = [mm] \pmat{ 1- \lambda & 2 & 3 \\ 0 & 1- \lambda & 1 \\ 2 & 0 & 1- \lambda} [/mm]

; B = [mm] \pmat{ 5- \lambda & 0 \\ 2 & 3- \lambda } [/mm]

Für welche [mm] \lambda \in [/mm] C bilden die Zeilen dieser Matritzen Basen von C³ bzw. C².

Um die Determinanten zu berechnen muss ich die Matritzen ja auf ZSF bringen , allerdings steh ich auf dem SChlauch wie ich die [mm] \lambda [/mm] 's wegbekommen soll bzw. muss ich das überhaupt? ICh wette ja mal, dass wir nicht umsonst in den komplexen Zahlen sind? Ich hoffe mir kann jemand helfen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Berechn. Determinanten über C!: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Di 22.01.2008
Autor: Biboo

Hey Richi4Life!

Ich gebe dir schonmal eine Antwort/Tip zu B!

Du berechnest die Determinante von B mit den Variablen aus.
Daraus erhältst du dann die Gleichung: [mm] det(B)=\lambda^{2}-8\lambda+15 [/mm]
Diese Gleichung setzt du gleich Null.
Durch p,q-Formel kannst du dann ja ausrechnen für welche Lambda die det(b)=0 ist.
Es gibt einen Satz, der besagt, dass die Determinante einer Matrix NUR ungleich null ist, wenn sie den maximalen Rang hat.
Wir haben jetzt aber ausgerechnet wann die Determinante null ist, also wann sie NICHT den maximalen Rang hat. Bei einer 2x2-Matrix bedeutet dies, dass die Spalten linear unabhängig sind, also beide Spalten(vektoren) eine Basis bilden.
Zusammengefasst:
[mm] \lambda^{2}-8\lambda+15=0 [/mm]  ---    [mm] \lambda_{1} [/mm] und [mm] \lambda_{2} [/mm] in B eingesetzt -> Basis
[mm] \lambda^{2}-8\lambda+15\not=0 [/mm] --- in B eingesetzt -> keine Basis, [mm] det(B)\not=0 [/mm]

Bei A musst du erstmal nach dem Laplaceschen Entwicklungssatz die Determinante bestimmen und erhältst dann(ich zumindest) ein Polynom dritten Grades. Von diesem musst du dann die reelen und komplexen Nullstellen bestimmen insofern es welche gibt.
Bei B habe ich keine komplexen Nullstellen gefunden.
Vielleicht habe ich aber auch was verkehrt gemacht, dann bitte ich um Korrektur! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de