www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Berechnen der Bogenlänge
Berechnen der Bogenlänge < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnen der Bogenlänge: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:02 So 14.05.2006
Autor: Olek

Aufgabe 1
Gegeben sei die Kurve $f(t)=(15 cos t, 15 sin t, 8t)$. Dabei läuft t von 1 bis 10.
Berechnen sie den Wert der Bogenlänge.

Aufgabe 2
Sei [mm] f(x)=3+\wurzel{3}x [/mm] für x [mm] \in [/mm] [0,2]. Wir betracheten die Ebene Kurve [mm] t\mapsto(t,f(t)) [/mm] für t [mm] \in [/mm] [0,2].
Berechnen sie die Bogenlänge L der Kurve.

Hallo Matheraum!
Zu den beiden Kurven gab es noch weitere Aufgabe, die ich alle lösen konnte. Wie man die Bogenlänge berechnet ist mir jedoch vollkommen unklar und wird mir aus der Vorlesung auch nicht klar.
Es wäre schön wenn mir da jemand weiterhelfen kann.
Schönen Sonntag,
Olek

        
Bezug
Berechnen der Bogenlänge: a)
Status: (Antwort) fertig Status 
Datum: 14:06 So 14.05.2006
Autor: Janyary

hi olek,

also wir hatten ein bsp. dazu.. ich hab also einfach mal versucht das anhand des bsp. zu loesen.

zur a) [mm] f(t)=\vektor{15cost\\15sint\\8t} [/mm]

s sei die bogenlaenge.

s= [mm] \integral_{1}^{10}\wurzel{x'^{2}+y'^{2}+z'^{2}} [/mm]

x=15cost     y=15sint     z=8t
x'=-15sint   y'=15cost   z=8

s= [mm] \integral_{1}^{10}\wurzel{(-15sint)^{2}+(15cost)^{2}+8^{2}} [/mm]
= [mm] \integral_{1}^{10}\wurzel{225sin^{2}t+225cos^{2}t+64} [/mm]
= [mm] \integral_{1}^{10}\wurzel{225(sin^{2}t+cos^{2}t)+64} [/mm]
[mm] =\integral_{1}^{10}\wurzel{289} [/mm]
[mm] =\integral_{1}^{10} [/mm] 17

s=17*10-17
s=153

ich denke das muesst so funktionieren. leider kann ich nicht einschaetzen ob das vom wert her passen kann. aber so wuerde ich zumindest rangehen.
hoffe das hat dir trotzdem erstmal geholfen.

LG Jany :)

Bezug
                
Bezug
Berechnen der Bogenlänge: Lösung zu b)?!
Status: (Frage) beantwortet Status 
Datum: 17:52 So 14.05.2006
Autor: Olek

Hallo,
ich habe jetzt was gefunden, was eigentlich ganz gut hinkommt, würde mich aber freuen, wenn mir das Ergebnis jemand bestätigen könnte.
Ich habe die Formel [mm] B(x)=\wurzel{1+f'(x)^{2}} [/mm] benutzt.
Ich erhalte dann [mm] \wurzel{1+\wurzel{3}^2}=4 [/mm]
Ist das der richtige Weg? Ich hätte dann aber gar nicht berückichtig, von wo bis wo x bzw. t geht.
MfG,
Olek

Bezug
                        
Bezug
Berechnen der Bogenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 So 14.05.2006
Autor: Peter_Pein


> Hallo,
>  ich habe jetzt was gefunden, was eigentlich ganz gut
> hinkommt, würde mich aber freuen, wenn mir das Ergebnis
> jemand bestätigen könnte.
>  Ich habe die Formel [mm]B(x)=\wurzel{1+f'(x)^{2}}[/mm] benutzt.

fast [ok]. Bogenlänge ist das Integral über diesen Ausdruck.

>  Ich erhalte dann [mm]\wurzel{1+\wurzel{3}^2}=4[/mm]

[notok]
Wurzel aus vier ist zwo.

Dann [mm] $\integral_{0}^{2}{2 dx}$ [/mm] berechnen --- und dann erst kommt vier 'raus.

>  Ist das der richtige Weg? Ich hätte dann aber gar nicht
> berückichtig, von wo bis wo x bzw. t geht.

Eben ;-) siehe oben.

>  MfG,
>  Olek

Alles Gute,
  Peter

Bezug
        
Bezug
Berechnen der Bogenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 So 14.05.2006
Autor: Fahnder

Hi,
also die Bögenlänge errechnet sich aus B(t) =  [mm] \integral_{2}^{0}{||f´(t)|| dt} [/mm]
||f´(t)|| ist ja die Geschwindigkeit und ergibt 2. Was du errechnet hast, ist nur die Geschwindigkeit, allerdings hast du die Wurzel vergessen. jetzt muss du noch das Intervall von 0 bis 2 rechnen
[mm] \integral_{2}^{0}{||f´(t)|| dt}= [/mm] 2*2 -2*0 = 4
Und damit hast du dann die Bögenlänge deiner Aufgabe
Fahnder

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de