www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Berechnen einer Determinanten
Berechnen einer Determinanten < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnen einer Determinanten: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:53 Di 03.01.2012
Autor: hubbel

Aufgabe
http://www.myimg.de/?img=aufgabe2c43f5.jpg

Für [mm] \IQ [/mm] ist es kein Problem, da ich das mit Laplace mache, aber was ist mit [mm] \IF_2? [/mm] Ich habe ja dieses Schachbrettmuster mit + und -, fällt das dann weg? Gibt es dann nur noch + oder wie ist das?

Danke schonmal.

        
Bezug
Berechnen einer Determinanten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 Di 03.01.2012
Autor: Al-Chwarizmi


> http://www.myimg.de/?img=aufgabe2c43f5.jpg
>  Für [mm]\IQ[/mm] ist es kein Problem, da ich das mit Laplace
> mache, aber was ist mit [mm]\IF_2?[/mm] Ich habe ja dieses
> Schachbrettmuster mit + und -, fällt das dann weg? Gibt es
> dann nur noch + oder wie ist das?
>  
> Danke schonmal.

Du kannst den Wert der Determinante zuerst in [mm] \IQ [/mm]
(genauer: in [mm] \IZ) [/mm] berechnen und dann den erhaltenen Wert
nach [mm] \IF_2 [/mm] übertragen, da der Ring-Homomorphismus von
[mm] \IZ [/mm] nach [mm] \IF_2 [/mm] mit Addition und Multiplikation verträglich ist.

LG   Al-Chw.


Bezug
                
Bezug
Berechnen einer Determinanten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Di 03.01.2012
Autor: hubbel

Sorry, aber da bin ich echt überfragt. Erstmal wollte ich wissen, wie man das ohne Übertragen machen kann bzw. geht das überhaupt? Und zweitens, kannst du mir das mal an einem Beispiel zeigen, also wie man das überträgt? Nehmen wir einfach mal an die Determinanten wäre 38 (habe es noch nicht berechnet), wie ginge das?

Bezug
                        
Bezug
Berechnen einer Determinanten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Di 03.01.2012
Autor: Al-Chwarizmi


> Sorry, aber da bin ich echt überfragt. Erstmal wollte ich
> wissen, wie man das ohne Übertragen machen kann bzw. geht
> das überhaupt? Und zweitens, kannst du mir das mal an
> einem Beispiel zeigen, also wie man das überträgt? Nehmen
> wir einfach mal an die Determinanten wäre 38 (habe es noch
> nicht berechnet), wie ginge das?

Die gerade Zahl [mm] 38\in\IZ [/mm] wird bei der Abbildung nach [mm] \IF_2 [/mm] auf
0 abgebildet. Also wäre der Wert der Determinante in [mm] \IF_2 [/mm]
gleich 0. Hättest du für die Determinante in [mm] \IZ [/mm] z.B. den
Wert -7 erhalten, so wäre sie in [mm] \IF [/mm] gleich 1, weil -7 eine
ungerade Zahl ist.

Natürlich könntest du die gesamte Determinantenberechnung
in [mm] \IF_2 [/mm] durchführen und dabei für die auftretenden Rechen-
operationen die Rechenregeln von [mm] \IF_2 [/mm] anwenden. Du hast
nach der Subtraktion gefragt. In [mm] \IF_2 [/mm] gilt für alle x die Gleichung
-x=x sowie für alle Paare (x,y) die Gleichung x-y=x+y  !

LG   Al-Chw.  


Bezug
                                
Bezug
Berechnen einer Determinanten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 Di 03.01.2012
Autor: hubbel

Wieso würden gerade Zahlen auf 0 abgebildet?

Bezug
                                        
Bezug
Berechnen einer Determinanten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Di 03.01.2012
Autor: MathePower

Hallo hubbel,

> Wieso würden gerade Zahlen auf 0 abgebildet?


Weil alle geraden Zahlen bei Divison durch 2 den Rest 0 lassen.


Gruss
MathePower

Bezug
                                                
Bezug
Berechnen einer Determinanten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 Di 03.01.2012
Autor: hubbel

Gut, ok, verstehe aber dennoch nicht, wie sich das auf [mm] \IF_2 [/mm] bezieht und vorallem auf die Determinanten, hättest du vielleicht eine Seite oder ein Stichwort, wo ich mir das anschauen kann?

Bezug
                                                        
Bezug
Berechnen einer Determinanten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Di 03.01.2012
Autor: leduart

Hallo
[mm] F_2 [/mm] hat doch als Elemente die Restklassen mod 2
d.h. als Repräsentanten nimmt man meist 0 und 1, alle geraden Zahlen sind 0 mod 2 all ungeraden 1 mod 2.
Was stellst du dir denn unter F>>-2 vor?
Gruss leduart

Bezug
                                                                
Bezug
Berechnen einer Determinanten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:35 Di 03.01.2012
Autor: hubbel

Ich glaub ich belasse es jetzt erstmal hierbei, ich merke es mir einfach, Mod hatten wir in der Form noch nicht richtig.

Danke euch für die Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de