www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Berechnung am Grenzwert
Berechnung am Grenzwert < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung am Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Mo 02.08.2010
Autor: Kuriger

Hallo und schönen Nachmittag


[mm] \limes_{x\rightarrow\\pi} (cos(2x))^{\bruch{-2}{(x -\pi)^2}} [/mm] = [mm] e^\bruch{-2 * ln(cos(2x)}{(x -\pi)^2} [/mm] (Ich habe den lim weggelassen, auch wenn es natürlich nicht ganz korrekt ist. Nun hat dieser Bruch den Typ [mm] "\bruch{0}{0}", [/mm] so dass ich Bernoulli anwenden kann.
[mm] e^{\bruch{-2*(-sin(2x)) * 2}{cos(2x) * 2*(x - \pi)}} [/mm] = [mm] e^{\bruch{2*(sin(2x))}{cos(2x) * (x - \pi)}} [/mm] Auch dieser Bruch hat wieder den Typ [mm] "\bruch{0}{0}" [/mm] also könnte ich erneut bernoulli anwenden.
= [mm] e^{\bruch{2*cos(2x)*2}{-sin(2x) * 2 * (x - \pi) + cos (2x)}} [/mm] = [mm] e^{\bruch{2}{- sin(2x) * (x - \pi)}}, [/mm] Nun würde eigentlich der Bruch beim grenzwert folgendes ergeben [mm] \bruch{2}{0} [/mm] Doch gemäss Resultat sollte [mm] e^{4} [/mm] rauskommen. Was mache ich falsch? Danke für die UNterstützung

        
Bezug
Berechnung am Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Mo 02.08.2010
Autor: XPatrickX


> Hallo und schönen Nachmittag
>  
>

Hallo,


> [mm]\limes_{x\rightarrow\\pi} (cos(2x))^{\bruch{-2}{(x -\pi)^2}}[/mm]
> = [mm]e^\bruch{-2 * ln(cos(2x)}{(x -\pi)^2}[/mm] (Ich habe den lim
> weggelassen, auch wenn es natürlich nicht ganz korrekt
> ist. Nun hat dieser Bruch den Typ [mm]"\bruch{0}{0}",[/mm] so dass
> ich Bernoulli anwenden kann.
>  [mm]e^{\bruch{-2*(-sin(2x)) * 2}{cos(2x) * 2*(x - \pi)}}[/mm] =
> [mm]e^{\bruch{2*(sin(2x))}{cos(2x) * (x - \pi)}}[/mm] Auch dieser
> Bruch hat wieder den Typ [mm]"\bruch{0}{0}"[/mm] also könnte ich
> erneut bernoulli anwenden.
>  = [mm]e^{\bruch{2*cos(2x)*2}{-sin(2x) * 2 * (x - \pi) + cos (2x)}}[/mm]
> = [mm]e^{\bruch{2}{- sin(2x) * (x - \pi)}},[/mm]

Der letzte Schritt ist mir nicht ganz klar. Vor dem Gleichheitszeichen stimmt noch alles. Dort kannst du den Grenzübergang [mm] x\to\pi [/mm] machen und erhälst [mm] e^{\frac{4 \cos(2\pi)}{0+\cos(2\pi)}}=e^4 [/mm]



> Nun würde
> eigentlich der Bruch beim grenzwert folgendes ergeben
> [mm]\bruch{2}{0}[/mm] Doch gemäss Resultat sollte [mm]e^{4}[/mm] rauskommen.
> Was mache ich falsch? Danke für die UNterstützung


Gruß Patrick

Bezug
        
Bezug
Berechnung am Grenzwert: aus Differenzen und Summen ...
Status: (Antwort) fertig Status 
Datum: 15:43 Mo 02.08.2010
Autor: Loddar

Hallo Kuriger!


> Was mache ich falsch?

1. Du postest mal wieder im absolut falschen Unterforum. [motz]
(Brauchst Dich nicht zu bemühen, ich habe gern hinter Dir her aufgeräumt ... mal wieder!).

2. Im vorletzten Schritt kürzt Du aus einer Summe. Und das tun bekanntermaßen nur die ...



Gruß
Loddar


Bezug
                
Bezug
Berechnung am Grenzwert: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:42 Mo 02.08.2010
Autor: Kuriger

Hallo

Ich mag es eigentlich nicht, wenn ihr mich kritisiert, wenn ich etwas falsch gerechnet habe, ohne konstruktiven beitrag. Vielleicht habt ihr schon gemerkt, dass nicht alle Leute mit eurer Intelligenz mithalten könnt. Deshalb bitte etwas geduldiger mit etwas tiefer IQ bestückten Leute wie in meiner Person.
Was ist denn das Problem wenn ich was kürze? Ich bin mir echt nicht bewusst, inwiefern ich einen mathematischen Fehler gemacht habe

Danke, gruss Kuriger

Bezug
                        
Bezug
Berechnung am Grenzwert: meine Meinung zu den Hinweisen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:21 Mo 02.08.2010
Autor: Loddar

Hallo Kuriger!


> Ich mag es eigentlich nicht, wenn ihr mich kritisiert, wenn
> ich etwas falsch gerechnet habe, ohne konstruktiven beitrag.

Das verstehe ich nicht: es wurde doch konkret der gemachte Fehler angesprochen.
Und: es wurden Dir sogar alternative sowie schneller Wege aufgezeigt.

Was erwartest Du denn noch?


> Vielleicht habt ihr schon gemerkt, dass nicht alle
> Leute mit eurer Intelligenz mithalten könnt. Deshalb bitte
> etwas geduldiger mit etwas tiefer IQ bestückten Leute wie
> in meiner Person.

Also bitte ... auf derartige (und alberne [sorry] ) "Diskussionen" lasse ich mich nicht ein.


> Was ist denn das Problem wenn ich was kürze? Ich bin mir
> echt nicht bewusst, inwiefern ich einen mathematischen
> Fehler gemacht habe

Hm, Du wurdest auf einen Fehler hingewiesen, denn man bereits in der 8. Klasse nicht mehr machen sollte. Daher auch nur die Anspielung meinerseits mit dem bekannten Merkspruch:
"Aus Differenzen und Summen kürzen nur die Dummen!"


Und als Mathe-Student(?) sollte man allerspätestens nach diesem Hinweis nur noch das klatschende Geräusch hören, wenn Du Dir mit der flachen Hand auf die Stirn schlägst.


Gruß
Loddar


Bezug
                        
Bezug
Berechnung am Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:13 Di 03.08.2010
Autor: Marcel

Hallo,

> Hallo
>  
> Ich mag es eigentlich nicht, wenn ihr mich kritisiert, wenn
> ich etwas falsch gerechnet habe, ohne konstruktiven
> beitrag.

das versteht jeder. Aber zum einen ist jeder Hinweis auf einen Fehler konstruktiv, zum anderen verstehe ich nicht, dass Du Dich hier persönlich angegriffen fühlst. Jeder hier macht Fehler, die sind zum Lernen da. Von daher nimmst Du Dir das am besten nicht so zu Herzen...

> Vielleicht habt ihr schon gemerkt, dass nicht alle
> Leute mit eurer Intelligenz mithalten könnt.
> Deshalb bitte
> etwas geduldiger mit etwas tiefer IQ bestückten Leute wie
> in meiner Person.

Warum machst Du Dich selbst schlecht? Es geht hier nirgends um IQ - und keiner hier weiß, wie hoch der der anderen ist. Ehrlich gesagt interessiert mich das noch nicht einmal, denn für einen hohen IQ kann man sich auch nicht unbedingt etwas kaufen. Und Mathe bedarf normalerweise auch mehr als nur eines hohen IQs...

>  Was ist denn das Problem wenn ich was kürze? Ich bin mir
> echt nicht bewusst, inwiefern ich einen mathematischen
> Fehler gemacht habe

Loddar hat Dir doch den Fehler konkret genannt. Dass Du Dich vll. durch seinen Spruch "... kürzen nur die Dummen." angegriffen gefühlt hast, mag' sein, aber das war definitiv nicht seine Absicht. Das ist einfach ein Standardspruch, der so gelehrt wird - und ist nichts anderes als eine Eselsbrücke. Gerade, weil am Ende ja "... nur die Dummen." steht, soll er im Gedächtnis bleiben. Denn man will es dann ja vermeiden, sich selbst als "dumm" zu "outen". Aber das ist nicht ernst gemeint. Denn wenn man überarbeitet ist oder sonstiges, passiert dem ein oder anderen das auch schonmal - manchmal ist es halt einfach nur Flüchtigkeitsfehler. Aber man sollte trotzdem darauf aufmerksam gemacht werden, falls es einem halt mal passiert ist.

Beste Grüße,
Marcel

Bezug
                                
Bezug
Berechnung am Grenzwert: nicht ausgesprochen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:35 Di 03.08.2010
Autor: Loddar

Hallo!


> Loddar hat Dir doch den Fehler konkret genannt. Dass Du
> Dich vll. durch seinen Spruch "... kürzen nur die Dummen."
> angegriffen gefühlt hast, mag' sein,

Zumal ich bis dato (auch mit voller Absicht) den Schluss des Satzes weggelassen hatte.


Gruß
Loddar


Bezug
        
Bezug
Berechnung am Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Mo 02.08.2010
Autor: schachuzipus

Hallo,

und gleich noch ein Tipp obendrauf ;-)

Nach der 1. Anwendung von de l'Hôpital schreibe etwas um:

[mm] $e^{\frac{2\blue{\sin(2x)}}{\blue{\cos(2x)}(x-\pi)}}=e^{2\cdot{}\frac{\blue{\tan(2x)}}{x-\pi}}$ [/mm]

Nun weißt du sicher, dass [mm] $\tan'(z)=1+\tan^2(z)$ [/mm] ist, mit de l'Hôpital und der Kettenregel im Zähler kommst du hier also sicher und weniger fehleranfällig ans Ziel ...

Gruß

schachuzipus

Bezug
        
Bezug
Berechnung am Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:10 Mo 02.08.2010
Autor: Marcel

Hallo,

> Hallo und schönen Nachmittag
>  
>
> [mm]\limes_{x\rightarrow\\pi} (cos(2x))^{\bruch{-2}{(x -\pi)^2}}[/mm]
> = [mm]e^\bruch{-2 * ln(cos(2x)}{(x -\pi)^2}[/mm] (Ich habe den lim
> weggelassen, auch wenn es natürlich nicht ganz korrekt
> ist. Nun hat dieser Bruch den Typ [mm]"\bruch{0}{0}",[/mm] so dass
> ich Bernoulli anwenden kann.

Du solltest vll. "Bernoulli-l'Hôpital" schreiben - gängiger scheint mir aber "Hôpital" zu sein. Wenngleich in Wahrheit es in der Tat so ist, dass Bernoulli sie entdeckte. (Vgl. Wiki.)

Beste Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de