www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Politik/Wirtschaft" - Berechnung der Kovarianz
Berechnung der Kovarianz < Politik/Wirtschaft < Geisteswiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Politik/Wirtschaft"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung der Kovarianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Do 10.02.2011
Autor: Jimpanse

Aufgabe
Geben Sie folgendes Ergebnis an:

1) Kovarianz zwischen A und B
2) Korrelation zwischen A und B

Guten Tag miteinander,

ich habe folgende Werte gegeben:

Tag         A                B
1       0,03544      0,06543
2       0,01167      0,03426
3       0,05089      0,02005

Anhand der Werte bekomme ich für die Erwartungsredite A = 0,0327; Erwartungsrendite B = 0,0399, Varianz A = 0,0003903; Varianz B = 0,0005388 heraus.

Nun möchte ich gern die Kovarianz zwischen A und B berechnen, dazu benutze ich folgende Formel:

Cov = [mm] \bruch{1}{n - 1} [/mm] * ( [mm] \summe_{i=1}^{n} A_{i} B_{i} [/mm] - n * [mm] A_{Rendite} [/mm] * [mm] B_{Rendite} [/mm] )

Leider komme ich nicht auf den geforderten Wert von -0,0000863

Im nächsten Schritt sollte die Korrelation berechnet werden, hier fehlt mir gänzlich die Formel.

Über eine Hilfe würde ich mich sehr freuen!!

Liebe Grüße

        
Bezug
Berechnung der Kovarianz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Fr 11.02.2011
Autor: ullim

Hi,

Die Kovarianz berechnet sich zu

[mm] Cov(A,B)=\bruch{1}{n-1}*\summe_{i=1}^{n}\left(A_i-\overline{A}\right)*\left(B_i-\overline{B}\right) [/mm]

mit n=3 und [mm] \overline{A}=\bruch{1}{n}*\summe_{i=1}^{n}A_i [/mm] und [mm] \overline{B}=\bruch{1}{n}*\summe_{i=1}^{n}B_i [/mm]

damit bekommst Du auch das verlangte Ergebnis.

Der Korrelationskoeffizient berechnet sich zu

[mm] \rho(A,B)=\bruch{Cov(A,B)}{\wurzel{Var(A)}*\wurzel{Var(B)}} [/mm] mit [mm] Var(A)=\bruch{1}{n-1}*\summe_{i=1}^{n}\left(A_i-\overline{A}\right)^2 [/mm] und [mm] Var(B)=\bruch{1}{n-1}*\summe_{i=1}^{n}\left(B_i-\overline{B}\right)^2 [/mm]

Bezug
                
Bezug
Berechnung der Kovarianz: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Fr 11.02.2011
Autor: Jimpanse

Hey,

vielen Dank für die anschauliche Antwort!! Bei der Kovarianz habe ich meinen Fehler jetzt gefunden, habs jetzt raus. Die Korrelation hat jetzt auch geklappt.

Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Politik/Wirtschaft"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de