www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Berechnung des Flächeninhaltes
Berechnung des Flächeninhaltes < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung des Flächeninhaltes: Aufgabe zur Kalsur!
Status: (Frage) beantwortet Status 
Datum: 14:28 Fr 08.12.2006
Autor: betaepo2

Aufgabe
Bestimmen Sie den Flächeninhalt A der Fläche zwischen dem Graphen der Funktion f mit f(x)= x² und der x-Achse über dem Intervall [0;3] als grenzwert der Obersumme.

Benutzen Sie die Formel [mm] \bruch{1}{6} [/mm] n(n+1)(2n+1).

Hallo,
bitte die Lösung angeben!
Wozu brauch man die unten genannte Gleichung ?

Mein Ansatz wäre zunächst eine Wertetabelle anzulegen oder wie würdet ihr vorgehen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Danke für die Zuschriften!

        
Bezug
Berechnung des Flächeninhaltes: Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 Fr 08.12.2006
Autor: M.Rex

Hallo.

Du musst für die Obersumme ja den Flächeninhalt der einzelnen kleinen Rechtecke aufaddieren.

Wenn ich die X-Achse im Intervall in n Teile zerlege, hat jedes dieser Rechtecke die Breite [mm] \bruch{3}{n} [/mm]

Jetzt brauchst du nur noch die Höhe der Rechtecke, diese ist ja der Funktionswert an der hinteren Ecke des Rechteckes.

Fangen wir mal an:

Das erste Rechteck (von 0 bis [mm] \bruch{3}{n}) [/mm] hat die Höhe [mm] f(\bruch{3}{n})=(\bruch{3}{n})² [/mm]
das zweite Rechteck geht auf der x-Achse von [mm] \bruch{3}{n} [/mm] bis [mm] 2*\bruch{3}{n} [/mm] hat also die Höhe: [mm] f(2*\bruch{3}{n})=(\bruch{2*3}{n})² [/mm]


Das ganze geht jetzt erstmal so weiter, bis zum letzten Rechteck mit der Höhe [mm] (n*\bruch{3}{n})² [/mm]

Jetzt sollst du alle Flächen aufaddieren.

Es gilt:

[mm] A=\underbrace{\bruch{3}{n}*(\bruch{3}{n})²}_{Rechteck1}+\underbrace{\bruch{3}{n}*(\bruch{2*3}{n})²}_{Rechteck2}+...+\underbrace{\bruch{3}{n}*(\bruch{n*3}{n})²}_{n-teRechteck} [/mm]

Jetzt kannst du noch ein wenig ausklammern:
[mm] A=\bruch{3}{n}*[(\bruch{3}{n})²+(\bruch{2*3}{n})²+...] [/mm]
[mm] =\bruch{3}{n}*(\bruch{3}{n})²[1²+2²+3³+...+n²] [/mm]
[mm] =\bruch{3}{n}*\bruch{9}{n²}*[1²+2²+3³+...+n²] [/mm]

und jetzt kannst du die []Formel für die Quadratzahlen anwenden.

Es gilt ja: [mm] [1²+2²+3²+...+n²]=\bruch{n(n+1)(2n+1)}{6} [/mm]

Also:
[mm] \bruch{3}{n}*\bruch{9}{n²}*[1²+2²+3³+...+n²] [/mm]
[mm] =\bruch{3}{n}*\bruch{9}{n²}*\bruch{n(n+1)(2n+1)}{6} [/mm]
[mm] =\bruch{3*9*n(n+1)(2n+1)}{n*n²*6} [/mm]
[mm] =\bruch{18n³+18n²+9n}{2n³} [/mm]
[mm] =9+\bruch{9}{n}+\bruch{9}{2n²} [/mm]

Wenn du jetzt die Anzahl der Rechtecke erhöhst, also n grösser werden lässt, ergibt sich für die Fläche:

[mm] A=\lim_{n\rightarrow\infty}9+\bruch{9}{n}+\bruch{9}{2n²} [/mm]
[mm] =\underbrace{\lim_{n\rightarrow\infty}9}_{=9}+\underbrace{\lim_{n\rightarrow\infty}\bruch{9}{n}}_{=0}+\underbrace{\lim_{n\rightarrow\infty}\bruch{9}{2n²}}_{=0} [/mm]
=9

Das wäre dann die gesuchte Fläche.

Marius



Bezug
                
Bezug
Berechnung des Flächeninhaltes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 So 10.12.2006
Autor: betaepo2

Aufgabe
[mm] =\bruch{3*9*n(n+1)(2n+1)}{n*n²*6} [/mm]
[mm] =\bruch{18n³+18n²+9n}{2n³} [/mm]

Danke für die Lösung, wie kommst du auf das Ergebnis?



Danke schön!, hast mir sehr geholfen!





Bezug
                        
Bezug
Berechnung des Flächeninhaltes: Antwort
Status: (Antwort) fertig Status 
Datum: 22:54 Mo 11.12.2006
Autor: M.Rex

Hallo nochmal

> [mm]=\bruch{3*9*n(n+1)(2n+1)}{n*n²*6}[/mm]

[mm] =\bruch{3*9*(n²+n)(2n+1)}{6n³} [/mm]
[mm] =\bruch{9(2n³+2n²+n²+n)}{2n³} [/mm]
=Oops, Rechenfehler [mm] \bruch{18n³+27n²+9n}{2n³} [/mm]
[mm] =\bruch{18n³+27n²+9n}{2n³} [/mm]

>

Am Endergebnis ändert dich aber nichts.

> Danke für die Lösung, wie kommst du auf das Ergebnis?
>  
>
>
> Danke schön!, hast mir sehr geholfen!
>  

Marius

>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de