www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Berechnung von Grenzwerten
Berechnung von Grenzwerten < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung von Grenzwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 So 06.02.2011
Autor: Lotl89

Aufgabe
Berechnen von Grenzwert:
lim (x gegen unendlich) [mm] x^k [/mm] cosx , k E von Z

Wie soll ich hier den Grenzwert berechnen? Einfach einsetzten? Aber was ist mit k?

        
Bezug
Berechnung von Grenzwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 So 06.02.2011
Autor: pyw

Moin,
> Berechnen von Grenzwert:
>  [mm] \lim_{x\to\infty}x^k [/mm] cos(x) , [mm] k\in \IZ [/mm]
>  Wie soll ich hier den Grenzwert berechnen? Einfach einsetzen? Aber was ist mit k?

Du musst eine Fallunterscheidung nach k machen.
Was passiert für [mm] k\geq [/mm] 0 und was für k<0? Beachte dabei, cos(x) oszilliert zwischen -1 und 1.

Gruß, pyw

P.S.: Formeleditor verwenden, erhöht die Lesbarkeit ;-)

Bezug
                
Bezug
Berechnung von Grenzwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 So 06.02.2011
Autor: Lotl89

Hallo, wie muss ich mit einbeziehen, dass cosx zwischen 1 und -1 pendelt?

Bezug
                        
Bezug
Berechnung von Grenzwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 So 06.02.2011
Autor: pyw


> Hallo, wie muss ich mit einbeziehen, dass cosx zwischen 1
> und -1 pendelt?

Das siehst du, wenn du dir Gedanken über die Fallunterscheidung machst.
Was passiert denn mit [mm] x^k [/mm] für [mm] x\to\infty, [/mm] wenn [mm] k\geq [/mm] 1? Was verursacht dann das ständig wechselnde Vorzeichen von cos(x)?

Bei k=0 ist [mm] x^0=1 [/mm] und der Grenzwert von [mm] 1\cdot [/mm] cos(x), [mm] x\to\infty [/mm] existiert offensichtlich nicht.

Was passiert für k<0? [mm] x^k=\frac{1}{x^{-k}}\to\ldots, x\to\infty [/mm]

Gruß, pyw

Bezug
                                
Bezug
Berechnung von Grenzwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 So 06.02.2011
Autor: Lotl89

Hallo, was passiert bei K>1? hier dürfte es ja eig keine ngrenzwert geben, da ja jeweils periodisch mit 1 /-1 mult. wird....?

Bezug
                                        
Bezug
Berechnung von Grenzwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 So 06.02.2011
Autor: pyw


> Hallo, was passiert bei [mm] K\geq1? [/mm] hier dürfte es ja eig keine
> ngrenzwert geben, da ja jeweils periodisch mit 1 /-1 mult.
> wird....?

Richtig, es gibt keinen Grenzwert. Es fehlt aber noch ein Teil der Begründung: [mm] x^k [/mm] geht gegen [mm] \infty, [/mm] wenn [mm] k\geq [/mm] 1.

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de