www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Berechnungen bei Funktionsscha
Berechnungen bei Funktionsscha < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnungen bei Funktionsscha: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 Mo 09.10.2006
Autor: madomat

Aufgabe
Die Funktionsschar lautet:
Fk(x) = [mm] 0,25x^{4} [/mm] + [mm] kx^{2} [/mm] - 2

A) Zeige, dass F k entweder eine oder drei Extremstellen besitzt. Für welche Werte von k ist dies jeweils der Fall?

B) Bestimme die Gleichung der geometrischen Ortslinie, auf der für k > 0 alle Extrema von fk liegen.

Habe leider rein gar keine Ahnung wie man das macht, wurde uns nie gesagt. Also kann mir jemand das erklären mit Lösungsweg?
Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Berechnungen bei Funktionsscha: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Mo 09.10.2006
Autor: hase-hh

moin m.,

ür die erste aufgabe machst du eine ganz normale kurvendiskussion, einziger unterschied, du hast einen parameter k anstelle einer zahl.

[mm] f_{k}(x) [/mm] = [mm] \bruch{1}{4}x^4 [/mm] + [mm] kx^2 [/mm] - 2

[mm] f_{k}'(x) [/mm] = [mm] x^3 [/mm] + 2kx

notwendige bed. f. extremwerte:

[mm] f_{k}'(x) [/mm] = 0

0 = [mm] x^3 [/mm] + 2kx

0 = [mm] x(x^2 [/mm] + 2k)

[mm] x_{1}= [/mm] 0

falls k [mm] \ge [/mm] 0 => keine weiteren nullstellen der ersten ableitung, also höchstens eine extremstelle

falls k<0  dann errechnen sich weitere nullstellen der ersten ableitung

[mm] 0=x^2 [/mm] + 2k

[mm] x^2 [/mm] = -2k

[mm] x_{1/2}= \pm \wurzel{-2k} [/mm]

oki, soweit...






Bezug
        
Bezug
Berechnungen bei Funktionsscha: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 Mo 09.10.2006
Autor: madomat

Aufgabe
  Die Funktionsschar lautet:
Fk(x) = $ [mm] 0,25x^{4} [/mm] $ + $ [mm] kx^{2} [/mm] $ - 2


B) Bestimme die Gleichung der geometrischen Ortslinie, auf der für k > 0 alle Extrema von fk liegen.  

Danke für die Antwort, habe A gelöst!
Kann mir jemand zu B helfen? Bzw zumindest mal erklären was so eine geometrische Ortslinie ist?

Bezug
                
Bezug
Berechnungen bei Funktionsscha: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Mo 09.10.2006
Autor: MyChaOS

Die Ortslinie ist die Gerade/Kurve/Funktion auf der alle Scheitel-/Hoch- oder Tiefpunkte liegen

Da du in A berechnet hast, dass es für k> 0 nur ein Maximum gibt kannst du also eine Funktion Kurve angeben auf der die Extrema liegen. Normalerweise müsstest du jetzt die y-Koordinate des Extrempunktes in Abhängigkeit der x-Koordinate angeben. Hierzu k eliminieren, wenn ich mich jetzt ned irre, hab des schon lang ned mehr gemacht

in diesem Fall ist es aber ganz einfach da die x-Koordinate der Extrempunkte ja nicht mehr von k abhängt, sondern gilt x=0

==> die Extrempunkte der Schar liegen alle irgendwo bie x=0 also auf der y-Achse

Bezug
                        
Bezug
Berechnungen bei Funktionsscha: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 Mo 09.10.2006
Autor: madomat

Aufgabe
siehe oben

Leider hat sich jetzt folgendes geändert: wir sollen für k < 0 diese komische ortslinie bestimmen... so jetzt brauch ich doch die schwere variante

Bezug
                                
Bezug
Berechnungen bei Funktionsscha: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Mo 09.10.2006
Autor: MyChaOS

Bei Drei extrema kannst du keine eizelne Ortskurve mehr aufstellen, sondern du musst das für jedes Extrema einzeln machen. Die von $ [mm] x_{1/2}= \pm \wurzel{-2k} [/mm] $ gleich, wie du gleich sehen wirst, das muss aber nicht immer sein!
Die einzelne bei x=0 bleibt natürlich bestehen.

so betrachten wir $x =  [mm] \pm \wurzel{-2k}$: [/mm]

wir lösen es nach k auf
==>
[mm] $(\pm x)^2 [/mm] = -2k$

durch das Quadrat fällt das [mm] $\pm$ [/mm] weg wodurch klar wird, dass [mm] $x_1$ [/mm] und [mm] $x_2$ [/mm] auf der selben kurve liegen

==>
$k = - [mm] \frac{1}{2} x^2$ [/mm]

==> damit gehen wir nun in die Funktion rein. g ist die funktion der Ortskurve:

$g(x) = [mm] f_{- \frac{1}{2} x^2}(x) [/mm]  =  [mm] \bruch{1}{4}x^4 [/mm] - [mm] \frac{1}{2} x^2*x^2 [/mm]  - 2$

wenn wir das nun vereinfachen kommen wir auf:

$g(x) =  [mm] \bruch{1}{4}x^4 [/mm]  +  - [mm] \frac{1}{2} x^4 [/mm] - 2 = - [mm] \frac{1}{4}x^4 [/mm] - 2$

sollte stimmen wenn ich mich richtig errinnere, ist aber schon etwas her seit ich das zuletzt gemacht hab. Denk aber des stimmt.

Bezug
                                        
Bezug
Berechnungen bei Funktionsscha: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:42 Mo 09.10.2006
Autor: madomat

Vielen Dank erstmal.
Ich werde es mir gleich nochmal anschauen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de