www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Berlekamp-Algo. Faktorisierung
Berlekamp-Algo. Faktorisierung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berlekamp-Algo. Faktorisierung: Rückfrage
Status: (Frage) überfällig Status 
Datum: 11:01 Di 18.12.2012
Autor: Pauli85

Hallo,
ich möchte mit dem Berlekamp-Algorithmus ein quadratfreies Polynom aus [mm] \IF_{q} [/mm] faktorisieren mit [mm] q=p^n, [/mm] wobei p eine Primzahl ist und n [mm] \in \IN. [/mm]
Wenn q eine Primzahl ist (also n=1), dann funktioniert das Ganze wunderbar. Allerdings habe ich noch Probleme wenn q keine Primzahl ist.
Ein kleines Beispiel: f(x) = [mm] x^2+x+2 \in \IF_{4}. [/mm] Nun bilde ich zuerst die Basiselemente mit [mm] \beta: [/mm] a [mm] \mapsto a^q [/mm] - a ab. Damit erhalte ich 1 [mm] \mapsto [/mm] 0, x [mm] \mapsto x^4 [/mm] - x [mm] \equiv [/mm] 2x + 2 mod f. Also sieht meine Berlekamp-Matrix wie folgt aus:
B := [mm] \pmat{ 0 & 2 \\ 0 & 2 }. [/mm] Der Kern dieser Matrix ist Kern(B) = {(1,0)}.
Nun das Problem: im Kern liegt nur ein konstantes Polynom, nämlich g(x)=1 [mm] \in \IF_{4}. [/mm] Damit wäre f nach dem Berlekamp-Algorithmus irreduzibel. Aber mit einem Programm erhalte ich diese Faktorisierung von f: f(x)=(x+2)*(x+3). Was stimmt also nicht an meinen Berechnungen? Ich habe dies natürlich auch schon mit anderen Polynomen in anderen Körpern probiert und es hat nie geklappt wenn q keine Primzahl ist.

Wäre über Hilfe sehr dankbar,

Viele Grüße

        
Bezug
Berlekamp-Algo. Faktorisierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Di 18.12.2012
Autor: felixf

Moin!

>  ich möchte mit dem Berlekamp-Algorithmus ein
> quadratfreies Polynom aus [mm]\IF_{q}[/mm] faktorisieren mit [mm]q=p^n,[/mm]
> wobei p eine Primzahl ist und n [mm]\in \IN.[/mm]
>  Wenn q eine
> Primzahl ist (also n=1), dann funktioniert das Ganze
> wunderbar. Allerdings habe ich noch Probleme wenn q keine
> Primzahl ist.
>  Ein kleines Beispiel: f(x) = [mm]x^2+x+2 \in \IF_{4}.[/mm] Nun
> bilde ich zuerst die Basiselemente mit [mm]\beta:[/mm] a [mm]\mapsto a^q[/mm]
> - a ab. Damit erhalte ich 1 [mm]\mapsto[/mm] 0, x [mm]\mapsto x^4[/mm] - x
> [mm]\equiv[/mm] 2x + 2 mod f. Also sieht meine Berlekamp-Matrix wie
> folgt aus:
>  B := [mm]\pmat{ 0 & 2 \\ 0 & 2 }.[/mm] Der Kern dieser Matrix ist
> Kern(B) = {(1,0)}.

Kann es sein, dass du [mm] $\IZ/4\IZ$ [/mm] mit [mm] $\IF_4$ [/mm] verwechselst? In [mm] $\IF_4$ [/mm] ist $2 = 0$, in [mm] $\IZ/4\IZ$ [/mm] nicht.

LG Felix


Bezug
        
Bezug
Berlekamp-Algo. Faktorisierung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Fr 21.12.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de