www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Bernoulli?
Bernoulli? < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoulli?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 Fr 21.10.2011
Autor: Kuriger

Hallo

Wie löse ich

P(70 [mm] \le [/mm] k [mm] \le [/mm] 80) = [mm] \summe_{k=70}^{80} \vektor{n \\ k} p^k*(1-p)^{n-k} [/mm]

p = 0.076
n = 1000

Muss ich es jetzt aufsummieren für jeden Wert von k= 70 bis 80?

P(k = 70 ) =  [mm] \vektor{1000 \\ 70} 0.076^70*(1-0.076)^{1000-70} [/mm]

Sofern mein rechnen nocht mitmachen würde..


        
Bezug
Bernoulli?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:47 Fr 21.10.2011
Autor: eichi


> Hallo
>  
> Wie löse ich
>  
> P(70 [mm]\le[/mm] k [mm]\le[/mm] 80) = [mm]\summe_{k=70}^{80} \vektor{n \\ k} p^k*(1-p)^{n-k}[/mm]
>  
> p = 0.076
>  n = 1000
>  
> Muss ich es jetzt aufsummieren für jeden Wert von k= 70
> bis 80?
>  

Wäre eine bei diskreten Verteilungen eine Möglichkeit, aber gerne sehr aufwendig. Du kanns die Binomialverteilung aber duch eine Normalverteilung approximativ (also "in etwa") angeben. Dort kannst du es einfach mit $ P(70 <= k <= 80) = P(X <=80) - P(X <= 70) $ ausrechnen. Das ginge um einiges schneller, sofern du das kannst

> P(k = 70 ) =  [mm]\vektor{1000 \\ 70} 0.076^70*(1-0.076)^{1000-70}[/mm]
>  
> Sofern mein rechnen nocht mitmachen würde..

>

www.wolframalpha.com kennst du? Der Rechner macht vieles mit ;)


Bezug
                
Bezug
Bernoulli?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:49 Fr 21.10.2011
Autor: Kuriger

Hallo

Nein kenne die Methode "Normalverteilung approximativ" nicht, kannst du mir sie vorstellen?

Danke

Bezug
                        
Bezug
Bernoulli?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:04 Fr 21.10.2011
Autor: eichi


> Hallo
>  
> Nein kenne die Methode "Normalverteilung approximativ"
> nicht, kannst du mir sie vorstellen?


Naja, nachzulesen etwas genauer hier: []https://secure.wikimedia.org/wikipedia/de/wiki/Normalverteilung#Approximation_der_Binomialverteilung_durch_die_Normalverteilung
Sagt halt im Grunde: Unter bestimmten Bedingungen ist die Binomialverteilung in etwa gleich der Normalverteilgung. D.h. du rechnest einfach mit der Normalverteilung statt mit der Binomialverteilung (ich hab aber jetzt nicht geprüft, ob die Bedingungen bei dir passen - musst du mal schauen)




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de