www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Bernoulli Aufgabe
Bernoulli Aufgabe < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoulli Aufgabe: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 16:09 So 19.01.2014
Autor: Zit3x

Aufgabe
Aufgabe:
Erfahrungsgemäß treten 12,5% der Passagiere, die Tickets gekauft haben, den Flug nicht an. Damit Flugzeuge möglichst voll besetzt sind, werden die Maschinen überbucht.
Für einen Flug mit 183 Sitzplätzen werden 200 Tickets verkauft. Berechnen Sie die Wahrscheinlichkeit dafür, dass nicht mehr Passagiere den Flug antreten, als tatsächlich in der Maschine Platz finden.

Lösung:
Das Zufallsexperiment kann als Bernoulli-Kette der Länge n=200 mit dem Parameter p=0.125 angesehen werden. Die Zufallsgröße T ist Binomialverteilt nach B(200;0.125).
[mm] P(T\ge17)=1-P(T\le16) [/mm]
[mm] P(T\ge17)=1-B(200;0,125;16) [/mm]
Mit dem Tafelwerk der Stochastik ergibt sich:
[mm] P(T\ge17)=1-0,02920 [/mm]
[mm] P(T\ge17)=0,9708 [/mm]

Mein Problem ist, dass ich nicht verstehe warum man von der Wahrscheinlichkeit 1, 16 Personen anstatt 17 "abzieht", da 200 Personen - 16: 184 wären, jedoch nur 183 Flugplätze vorhanden sind.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bernoulli Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 So 19.01.2014
Autor: abakus


> Aufgabe:
> Erfahrungsgemäß treten 12,5% der Passagiere, die Tickets
> gekauft haben, den Flug nicht an. Damit Flugzeuge
> möglichst voll besetzt sind, werden die Maschinen
> überbucht.
> Für einen Flug mit 183 Sitzplätzen werden 200 Tickets
> verkauft. Berechnen Sie die Wahrscheinlichkeit dafür, dass
> nicht mehr Passagiere den Flug antreten, als tatsächlich
> in der Maschine Platz finden.

>

> Lösung:
> Das Zufallsexperiment kann als Bernoulli-Kette der Länge
> n=200 mit dem Parameter p=0.125 angesehen werden. Die
> Zufallsgröße T ist Binomialverteilt nach B(200;0.125).
> [mm]P(T\ge17)=1-P(T\le16)[/mm]
> [mm]P(T\ge17)=1-B(200;0,125;16)[/mm]
> Mit dem Tafelwerk der Stochastik ergibt sich:
> [mm]P(T\ge17)=1-0,02920[/mm]
> [mm]P(T\ge17)=0,9708[/mm]
> Mein Problem ist, dass ich nicht verstehe warum man von
> der Wahrscheinlichkeit 1, 16 Personen anstatt 17 "abzieht",
> da 200 Personen - 16: 184 wären, jedoch nur 183
> Flugplätze vorhanden sind.

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo,
das ist ein Fehler der Musterlösung.
Übrigens: Eie Aussage wie "Die Zufallsgröße T ist binomialverteilt" ist völlig inhaltsleer, solange nich vorher definiert wird, was denn T sein soll.
Hier fehlt also etwas in der Art von "Sei T die Anzahl derjenigen Ticketbesitzer, die den Flug nicht antreten."
Gruß Abakus

Bezug
        
Bezug
Bernoulli Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 So 19.01.2014
Autor: HJKweseleit

Am einfachsten löst du das Problem ohne hin und her so:

Wenn keine Überbuchung vorliegen soll, müssen 17 oder mehr Personen absagen. Also liegt bei 0 - 16 Personen eine Überbuchung vor, und deshalb musst du den Wert von B(200;0,125;16) benutzen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de