www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Bernoullipol. und -zahlen
Bernoullipol. und -zahlen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoullipol. und -zahlen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:18 So 28.04.2013
Autor: Salamence

Aufgabe
Sei [mm] b_{0}(x)=1 [/mm] und die Polynomfunktionen (die Bernoullipolynome) [mm] b_{n} [/mm] auf [0,1] definiert durch [mm] b_{n}'= [/mm] n [mm] b_{n} [/mm] und [mm] \int_{0}^{1} b_{n}(x) [/mm] dx =0. Und [mm] B_{n}:=b_{n}(0) [/mm] die Bernoullizahlen. Zeigen Sie, dass [mm] b_{n} [/mm] im Betrag durch n! beschränkt ist, dass
[mm] \sum b_{n}(x) \frac{t^{n}}{n!} [/mm] = [mm] \frac{t e^{t x}}{e^{t}-1}, [/mm] dass [mm] b_{n}(1-x)=(-1)^{n} b_{n}(x) [/mm] und dass [mm] B_{n} [/mm] für alle ungeraden n bis auf 1 verschwindet.

Huhu!

Irgendwie tu ich mich schwer mit dieser Aufgabe, obwohl sie eigentlich nicht so schwer sein sollte. Die Abschätzung kommt mir sehr grob vor...Es sieht für mich (nach Ansicht der ersten paar [mm] b_{n}) [/mm] so aus, als wären sie gar durch 1 beschränkt, da kann es doch nicht so schwer sein, zu beweisen, dass sie durch n! beschränkt sind... Das muss doch irgendwie induktiv hinhauen, immerhin steht da schon nen n in der Rekursion... Damit krieg ich aber nur fast sowas hin...

Es ist [mm] b_{n}(x)=\int_{0}^{x}b_{n}'(x)dx +b_{n}(0) [/mm]
Also [mm] |b_{n}(x)| \le [/mm] n! x + [mm] |b_{n}(0)| [/mm]
Da stört diese Bernoullizahl noch...
Anders herangehen kann man an die Sache, wenn man das n-te Bernoullipolynom explizit in Abhängigkeit von den Koeffizienten des (n-1)-ten hinschreibt. Aber da seh ich auch nicht, warum diese Ungleichung stimmt...
[mm] b_{n}(x)=\sum_{i=0}^{n-1} \frac{n a_{i}}{i+1}(x^{i+1}- \frac{1}{i+2}) [/mm]

Zum zweiten: Laut wolframalpha ist diese Reihe die Taylorreihe von der rechten Funktion bei t=0. Wenn ich die aber selbstberechnen will, stoße ich auf Probleme bei der Ableitung, weil diese bei t= 0 nur ein GW ist und es wird schon bei der ersten unglaublich kompliziert. Wie also kann ich zeigen, dass diese Polynome als Ableitung der rechten Funktion auftreten, indem ich irgendwie zeige, dass sie gerade diese rekursiven Bedingungen erfüllen? Aber wie?
Das dritte hab ich wie das erste versucht über das Integral, aber irgendwie stecke ich auch da in einer Sackgasse.
Beim vierten hab ich versucht über die explizite Formel zu zeigen, dass wenn eine Bernoullizahl verschwindet, dass auch die übernächste verschwindet...Aber das seh ich da auch nicht...

        
Bezug
Bernoullipol. und -zahlen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:20 Di 30.04.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de