www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Berührpunkt zweier Graphen
Berührpunkt zweier Graphen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berührpunkt zweier Graphen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Sa 24.03.2007
Autor: desperategirl

Aufgabe
Gegeben ist die Funktionenschar:
[mm] f_k(x): \bruch{e^{k*\wurzel{x}}}{\wurzel{x}} [/mm] ; x e R+ und k e R

Die dazu gehörigen Graphen heißen [mm] Gx_{k}. [/mm]

Gegeben ist die Funktionenschar:
[mm] gx_{a}=a-2e^\wurzel{x} [/mm]

Ihre Graphen heißen [mm] Hx_{a}. [/mm]
Bestimmen Sie den Parameterwert a so, dass der Graph [mm] Hx_{a} [/mm] der zugehörigen Funktion [mm] gx_{a} [/mm] den Graphen [mm] Gx_{1} [/mm] beürhrt!

Wie bekomme ich a?

Ich weiß, dass man den Berührpunkt bekommt wenn f(x)=g(x) und wenn f'(x)=g'(x).
Aber wenn man g(x) ableitet, dann hat man kein a mehr und das braucht man ja?
Kann mir jemand helfen?
lg
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Berührpunkt zweier Graphen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:47 Sa 24.03.2007
Autor: Kroni

Hi,


Nun gut, durch die erste Gleichung, dass f(x)=g(x) sein muss, hast du ja noch das a drin.

Nun musst du gleichsetzen und auflösen.

Sláin,

Kroni

sry, das mit dem "sicher sein, dass aufgabestellung richtig" hatte ich aufgrund einen Fehler meinerseits geschriebn.

Hatte nicht genau auf die Definition von g und h geachtet.

So wie Loddar das sagt, stimmts.

Sry


Bezug
        
Bezug
Berührpunkt zweier Graphen: erst Berührpunkt ermitteln
Status: (Antwort) fertig Status 
Datum: 16:16 Sa 24.03.2007
Autor: Loddar

Hallo desperategirl,

[willkommenmr] !!


Die beiden Bestimmungsgleichungen hast Du ja mit [mm] $f_1(x) [/mm] \ = \ [mm] g_a(x)$ [/mm] sowie  [mm] $f_1'(x) [/mm] \ = \ [mm] g_a'(x)$ [/mm] bereits aufgestellt.

Da in der 2. Gleichung mit den Ableitungen kein $a_$ mehr vorkommt, kannst Du hier direkt den x-Wert des Berührpunktes ermitteln und anschließend den gesuchten Wert $a_$ .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de