www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Berührungsstelle
Berührungsstelle < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berührungsstelle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 So 13.11.2011
Autor: pc_doctor

Aufgabe
Für welche a,b [mm] \in \IR [/mm] berühren sich die Graphen von f(x) =
[mm] \bruch{1}{x} [/mm] und g(x) = [mm] ax^2+bx+1,5 [/mm] bei [mm] x_0=0,5. [/mm]

Hallo , ich komme bei dieser Aufgabe nicht so ganz klar , weil ich 2 Unbekannte habe :


f(x) = [mm] \bruch{1}{x} [/mm]
f'(x) = - [mm] \bruch{1}{x^2} [/mm]

g(x) = [mm] ax^2 [/mm] + bx +1,5
g'(x) = 2ax +b +1,5

Für einen Berührungspunkt muss ja gelten : f(x) = g(x)
f'(x) = g'(x)
Nur wie komme ich hier weiter bei dieser Aufgabe ?

Kurz noch ne kleine Frage :

Wenn ich ne FUnktion habe :

f(x) = 3ax+ 4x2b und wenn ich das ableite , a und b müssen "mitgenommen" werden oder ?
Also f'(x) = 3a + 8b ?

        
Bezug
Berührungsstelle: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 So 13.11.2011
Autor: abakus


> Für welche a,b [mm]\in \IR[/mm] berühren sich die Graphen von f(x)
> =
> [mm]\bruch{1}{x}[/mm] und g(x) = [mm]ax^2+bx+1,5[/mm] bei [mm]x_0=0,5.[/mm]
>  Hallo , ich komme bei dieser Aufgabe nicht so ganz klar ,
> weil ich 2 Unbekannte habe :
>  
>
> f(x) = [mm]\bruch{1}{x}[/mm]
> f'(x) = - [mm]\bruch{1}{x^2}[/mm]
>
> g(x) = [mm]ax^2[/mm] + bx +1,5
>  g'(x) = 2ax +b +1,5
>  
> Für einen Berührungspunkt muss ja gelten : f(x) = g(x)
> f'(x) = g'(x)
>  Nur wie komme ich hier weiter bei dieser Aufgabe ?

Die sollen sich [mm] \red{an\;der\;Stelle\;0,5} [/mm] berühren.
Also kannst du für x den Wert 0,5 einsetzen und hast zwei Gleichungen mit den Unbekannten a und b.
Gruß Abakus

>
> Kurz noch ne kleine Frage :
>  
> Wenn ich ne FUnktion habe :
>  
> f(x) = 3ax+ 4x2b und wenn ich das ableite , a und b müssen
> "mitgenommen" werden oder ?
> Also f'(x) = 3a + 8b ?


Bezug
                
Bezug
Berührungsstelle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 So 13.11.2011
Autor: pc_doctor

In die Ableitung oder einfach in die Funktion ?

Bezug
                        
Bezug
Berührungsstelle: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 So 13.11.2011
Autor: abakus


> In die Ableitung oder einfach in die Funktion ?  

Wenn sie die Funktionen bei x=0,5 berühren, haben sie DORT gleiche Werte UND gleiche Anstiege.


Bezug
        
Bezug
Berührungsstelle: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 So 13.11.2011
Autor: Al-Chwarizmi


> Für welche a,b [mm]\in \IR[/mm] berühren sich die Graphen von f(x)
> =
> [mm]\bruch{1}{x}[/mm] und g(x) = [mm]ax^2+bx+1,5[/mm] bei [mm]x_0=0,5.[/mm]
>  Hallo , ich komme bei dieser Aufgabe nicht so ganz klar ,
> weil ich 2 Unbekannte habe :
>  
>
> f(x) = [mm]\bruch{1}{x}[/mm]
> f'(x) = - [mm]\bruch{1}{x^2}[/mm]
>
> g(x) = [mm]ax^2[/mm] + bx +1,5
>  g'(x) = 2ax +b +1,5    [notok]

Diese Ableitung ist falsch !

> Für einen Berührungspunkt muss ja gelten : f(x) = g(x)
> f'(x) = g'(x)

An der Stelle [mm] x_0 [/mm] !!

Ja. Daraus ergeben sich 2 Gleichungen für die Unbekannten.

LG


Bezug
                
Bezug
Berührungsstelle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 So 13.11.2011
Autor: pc_doctor

g'(x) = g'(x) = 2ax +b
Ist das richtig ? Sorry hab die Konstante nicht beachtet.

Bezug
                        
Bezug
Berührungsstelle: Antwort
Status: (Antwort) fertig Status 
Datum: 15:56 So 13.11.2011
Autor: Al-Chwarizmi


> g'(x) = g'(x) = 2ax +b
>  Ist das richtig ? Sorry hab die Konstante nicht beachtet.

Ja.
Beachtet hast du sie schon. Nur hast du nicht dran gedacht,
dass die Ableitung einer Konstanten gleich null ist.

LG  


Bezug
                                
Bezug
Berührungsstelle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 So 13.11.2011
Autor: pc_doctor

Kurz noch eine Frage , wenn ich ne Fnktion habe :

f(x) = 3ax+ 4x2b und wenn ich das ableite ,müssen dann a und b  "mitgenommen" werden?
Also f'(x) = 3a + 8b ?

Bezug
                                        
Bezug
Berührungsstelle: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 So 13.11.2011
Autor: M.Rex

Hallo

Was meinst du mit 4x2b?

Falls du 4x²b meinst, wäre die Ableitung dieses Teiles 8bx

Marius


Bezug
                                                
Bezug
Berührungsstelle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 So 13.11.2011
Autor: pc_doctor

Das heißt doch , dass in diesem Fall a und b immer beachtet werden müssen , weil sie Faktoren sind oder ?
Und Faktoren "kommen immer mit " , oder ?
Es gilt ja :
c* f'(x)

Bezug
                                                        
Bezug
Berührungsstelle: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 So 13.11.2011
Autor: M.Rex


> Das heißt doch , dass in diesem Fall a und b immer
> beachtet werden müssen , weil sie Faktoren sind oder ?
>  Und Faktoren "kommen immer mit " , oder ?
>  Es gilt ja :
>   c* f'(x)

Das stimmt ja auch soweit. Aber 4x2b ist als Schreibweise eben nicht optimal.
Das sollte man (je nachdem was gemeint ist) zu 8bx oder zu 4bx² zusammenfassen bzw sortieren.

Marius


Bezug
                                                                
Bezug
Berührungsstelle: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 So 13.11.2011
Autor: pc_doctor

Ja hast Recht , vielen Dank nochmal für die Hilfe an alle.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de