www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Beschränkte Funktion
Beschränkte Funktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränkte Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:19 Mi 24.03.2010
Autor: Pidgin

Aufgabe
Nehme an das I ein nichtleeres offenes Intervall ist und das f beschränkt und C^unendlich auf I ist. Wenn ein M > 0 existiert, so dass [mm] |f^{(k)}(x)| \leq [/mm] Mk  [mm] \forall [/mm] x [mm] \in [/mm] I und k genügend groß ist, und wenn a,b [mm] \in [/mm] I existieren, so dass [mm] \int\limits_a^b f(x)x^n [/mm] dx = 0 für n = 0, 1, ... gilt, dann beweise dass f identisch Null auf [a,b] ist.

Ich hab leider keine Ahnung wie ich an diese Aufgabe herangehen soll. Ich habs mal mit partieller Integration probiert, aber da bin ich leider nicht weitergekommen. Hat jemand eine Idee? Wäre dankbar für jede Hilfe.

        
Bezug
Beschränkte Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:23 Mi 24.03.2010
Autor: fred97

Sei [mm] x_0 \in [/mm] I fest. Sei [mm] T_n [/mm] das n-te Taylorpolynom von f (Entw.-Punkt [mm] x_0). [/mm] Sei x [mm] \in [/mm] I.

Nach dem Satz von Taylor ex. ein [mm] \xi [/mm] zwischen [mm] x_0 [/mm] und x mit:

             $f(x) [mm] -T_n(x)= \bruch{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$ [/mm]

Mit der Vor. $ [mm] |f^{(k)}(x)| \leq [/mm] $ Mk  $ [mm] \forall [/mm] $ x $ [mm] \in [/mm] $ I und k genügend groß, zeige nun:

                 [mm] $T_n(x) \to [/mm] f(x)$ für $n [mm] \to \infty$ [/mm]

D.h.:   (*)     $f(x) = [mm] \summe_{n=0}^{\infty}a_n(x-x_0)^n$ [/mm] für jedes x [mm] \in [/mm] I,

wobei [mm] a_n= \bruch{f^{(n)}(x_0)}{n!}. [/mm] Die Potenzreihe rechts in (*) konvergiert auf [a,b]  gleichmäßig gegen f.

Dann konvergiert auch


(**)  [mm] \summe_{n=0}^{\infty}a_nf(x)(x-x_0)^n [/mm]  

auf [a,b]  gleichmäßig gegen [mm] f^2. [/mm] Berechne damit und mit der Vor. $ [mm] \int\limits_a^b f(x)x^n [/mm] $ dx = 0 für n = 0, 1, ...  mal das Integral [mm] \integral_{a}^{b}{f(x)^2 dx} [/mm]


FRED



Bezug
        
Bezug
Beschränkte Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:39 Mi 24.03.2010
Autor: fred97

Es geht unter weit schwächeren Voraussetzungen, wenn man den Approximationssatz von Weierstraß zur Verfügung hat.

Behauptung: Ist f [mm] \in [/mm] C[a,b] und gilt  $ [mm] \int\limits_a^b f(x)x^n [/mm] $ dx = 0 für n = 0, 1, ..., so ist f identisch Null auf [a,b] .

Beweis: aus dem Approximationssatz von Weierstraß erhlten wir eine Folge [mm] (p_n) [/mm] von Polynomen , welche auf [a,b]  gleichmäßig gegen f konvergiert. Dann konvergiert die Folge [mm] (fp_n) [/mm] auf [a,b] gleichmäßig gegen [mm] f^2. [/mm] Nach Vor. ist [mm] \integral_{a}^{b}{p_nf(x) dx}=0 [/mm] für jedes n, somit

   [mm] \integral_{a}^{b}{f(x)^2 dx}= [/mm] lim [mm] \integral_{a}^{b}{p_nf(x) dx}=0 [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de