www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Beschränktes Wachstum
Beschränktes Wachstum < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränktes Wachstum: Frage zu Aufgaben
Status: (Frage) beantwortet Status 
Datum: 19:33 Do 15.12.2005
Autor: Ynm89

Aufgabe 1
Bei einem Wachstumsvorgang mit Anfangbestand B(0) = 20 gilt für den Bestand nach t+1 Zeitschritten: B(t+1)=0,7*B(t)+10.
Berechne B(1), B(2).........B(5).
Zeige, dass es sich um beschränktes Wachstum handelt. Bestimme die Schranke S.

Aufgabe 2
Eine Firma bringt in einer Stadt mit 30000 Haushalten einen neuen Haushaltsartikel auf den Markt. In einer Werbeaktion wurde er zuvor bekannt gemacht.

a) Was spricht für die Annahme, dass die Zahl der verkauften Artikel im Laufe der nächsten Monate nach dem Gesetz des beschränkten Wachstums zunehmen wird?

b)Im ersten Monat werden 1800 Stück verkauft. Ist es aufgrund dieser Erfahrung realistisch, dass sich im ersten Halbjahr 10000 Artikel verkaufen lassen?

ZU AUFGABE 1:

Ich verstehe nicht wie ich mit Hilfe der Formel die in der Aufgabenstellung steht B(1)...... berechnen kann, außerdem kapiere ich nicht wie ich die Schranke S bestimme....

ZU AUFGABE 2:

Muss ich bei dieser Aufgabe überhaupt etwas rechnen oder doch??

Bitte um Hilfe bin leider kein Mathegenie
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beschränktes Wachstum: zur allerersten
Status: (Antwort) fertig Status 
Datum: 19:54 Do 15.12.2005
Autor: Bastiane

Hallo!

> Bei einem Wachstumsvorgang mit Anfangbestand B(0) = 20 gilt
> für den Bestand nach t+1 Zeitschritten:
> B(t+1)=0,7*B(t)+10.
>  Berechne B(1), B(2).........B(5).
>  Zeige, dass es sich um beschränktes Wachstum handelt.
> Bestimme die Schranke S.

> Ich verstehe nicht wie ich mit Hilfe der Formel die in der
> Aufgabenstellung steht B(1)...... berechnen kann, außerdem
> kapiere ich nicht wie ich die Schranke S bestimme....

Na, B(1) berechnest du, indem du t=0 setzt. Dann steht ja links B(1) und rechts kannst du dann berechnen: 0,7*B(0)+10 und B(0) ist ja gegeben.

Bei dem Rest muss dir leider jemand anders helfen...

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Beschränktes Wachstum: ebenfalls zur ersten Aufgabe
Status: (Antwort) fertig Status 
Datum: 21:20 Do 15.12.2005
Autor: Karl_Pech

Hallo Ynm89,


[willkommenmr]


> Bei einem Wachstumsvorgang mit Anfangbestand B(0) = 20 gilt
> für den Bestand nach t+1 Zeitschritten:
> B(t+1)=0,7*B(t)+10.
>  Berechne B(1), B(2).........B(5).
>  Zeige, dass es sich um beschränktes Wachstum handelt.
> Bestimme die Schranke S.


Hierbei handelt es sich um eine Rekurrenzrelation. Man löst so etwas indem man die Rekursion mehrmals auf sich selbst anwendet. Nach einigem Einsetzen kann man dann hoffen ein Bildungsmuster zu entdecken. Mal sehen wie weit ich komme:


[mm]\begin{gathered} B\left( t \right) = 0.7B\left( {t - 1} \right) + 10 = 0.7\left( {0.7B\left( {t - 2} \right) + 10} \right) + 10 \hfill \\ = 0.7^2 B\left( {t - 2} \right) + 0.7^1 \cdot 10 + 0.7^0 \cdot 10 \hfill \\ = 0.7^2 \left( {0.7B\left( {t - 3} \right) + 10} \right) + 0.7^1 \cdot 10 + 0.7^0 \cdot 10 \hfill \\ = 0.7^3 B\left( {t - 3} \right) + 0.7^2 \cdot 10 + 0.7^1 \cdot 10 + 0.7^0 \cdot 10 \hfill \\ = \cdots = 0.7^i B\left( {t - i} \right) + 0.7^{i - 1} \cdot 10 + \cdots + 0.7^0 \cdot 10 \hfill \\ = 0.7^i B\left( {t - i} \right) + \sum\limits_{k = 0}^{i - 1} {0.7^k \cdot 10} \mathop = \limits^{\begin{subarray}{l} {\text{Formel für}} \\ {\text{geometrische}} \\ {\text{Reihe}} \end{subarray}} 0.7^i B\left( {t - i} \right) + 10\frac{{0.7^i - 1}} {{0.7 - 1}} \hfill \\ = \cdots = 0.7^t B\left( {\underbrace {t - t}_0} \right) + 10\frac{{0.7^t - 1}} {{0.7 - 1}} = 20 \cdot 0.7^t - \frac{{100}} {3}\left( {0.7^t - 1} \right) \hfill \\ \end{gathered}[/mm]


Da wir hier unsere Intuition für das Bildungsmuster benutzt haben, müssen wir noch einen exakten Beweis führen:


[mm]\underline{\texttt{Induktionsanfang }\left(t = 0\right):}[/mm]


[mm]B\left( 0 \right) = 20 = 20 \cdot 0.7^0 - \frac{{100}} {3}\left( {1 - 1} \right) = 20 \cdot 0.7^0 - \frac{{100}} {3}\left( {0.7^0 - 1} \right)\;\Diamond[/mm]


Induktionsannahme:


Angenommen die Aussage wäre für $t [mm] \in \mathbb{N}_0$ [/mm] bewiesen.


[mm]\underline{\texttt{Induktionsschritt }\left(t \leadsto t+1\right):}[/mm]


[mm]\begin{gathered} B\left( {t + 1} \right)\mathop = \limits^{{\text{Definition}}} 0.7B\left( t \right) + 10\mathop = \limits^{{\text{Induktionsannahme}}} 0.7\left( {20 \cdot 0.7^t - \frac{{100}} {3}\left( {0.7^t - 1} \right)} \right) + 10 \hfill \\ = 20 \cdot 0.7^{t + 1} - \frac{{100}} {3}\left( {0.7^{t + 1} - 0.7} \right) + 10 = 20 \cdot 0.7^{t + 1} - \frac{{100}} {3} \cdot 0.7^{t + 1} + \frac{{100}} {3} \cdot 0.7 + 10 \hfill \\ = 20 \cdot 0.7^{t + 1} - \frac{{100}} {3} \cdot 0.7^{t + 1} + \frac{{700}} {{30}} + \frac{{300}} {{30}} = 20 \cdot 0.7^{t + 1} - \frac{{100}} {3} \cdot 0.7^{t + 1} + \frac{{1000}} {{30}} \hfill \\ = 20 \cdot 0.7^{t + 1} - \frac{{100}} {3} \cdot 0.7^{t + 1} + \frac{{100}} {3} = 20 \cdot 0.7^{t + 1} - \frac{{100}} {3}\left( {0.7^{t + 1} - 1} \right)\;\Box \hfill \\ \end{gathered}[/mm]


Unsere Intuition hat uns also nicht getäuscht.


Jetzt betrachten wir den Grenzwert für $t [mm] \to \infty$: [/mm]


[mm]\mathop {\lim }\limits_{t \to \infty } \left( {20 \cdot \frac{{7^t }} {{10^t }} - \frac{{100}} {3}\left( {\frac{{7^t }} {{10^t }} - 1} \right)} \right)\mathop = \limits^{\begin{subarray}{l} 10^t {\text{ wächst}} \\ {\text{schneller als}} \\ 7^t \end{subarray}} - \frac{{100}} {3} \cdot \left( { - 1} \right) = \frac{{100}} {3} \approx 33.3[/mm]


Also ist dies unser S, und die Beschränktheit von [mm] $B\left(t\right)$ [/mm] ist gezeigt.



Viele Grüße
Karl




Bezug
        
Bezug
Beschränktes Wachstum: Zu Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 10:20 Fr 16.12.2005
Autor: leduart

Hallo
Im ersten Teil der Aufgabe sollst du nur überlegen, was dafür oder dagegen spricht, dass ein Wachstum wie in 1 eintreten kann. Das könnte genau die Formel sein, nur mit anderen Anfangswert B(0) oder eine entsprechende :B(t+1)=q*B(t)+a ,q<1. Stee dir vor, du willst einen Investor überzeugen, dass es sich lohnt, oder nem Freund raten oder abraten die Aktie zu kaufen!
Im 2. Teil rechnest du B(6mon) mit der Formel aus 1 aus, mit B(0)=1800, eventuell probierst du noch andere a als 10 aus. oder andere q als 0,7
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de