www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Beschränktheit
Beschränktheit < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränktheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:23 Sa 21.11.2009
Autor: Ayame

Ich soll diese Folge auf Monotonie und beschränktheit untersuchen :

[mm] (\bruch{1-n+n^{2}}{1+n} [/mm]

Monotonie :

[mm] \bruch{1-(n+1) + (n+1)^{2}}{1+(n+1)} [/mm] = [mm] \bruch{n+n^{2}+2n+1}{2+n} [/mm] = [mm] \bruch{n^{2}+3n+1}{2+n} [/mm] > 0

monoton wachsend

Jetzt kommt mein Problem : Wie untersuche ich sie auf beschränktkeit ?


        
Bezug
Beschränktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Sa 21.11.2009
Autor: leduart

Hallo
dass die Folge nach oben nicht begrenzt ist, kann man doch leicht zeigen. nach unten suchst du einfach den kleinsten wert, wenn sie monoton wächst, muss das ja bei n=1 sein.
aber die Monotonie hast du doch nicht bewiesen, wann [mm] a_{n+1}>0 [/mm] ist. (auuserdem ist da noch ein Rechenfehler drin.
$ [mm] \bruch{n^{2}+3n+1}{2+n} [/mm] $  falsch richtig $ [mm] \bruch{n^{2}+n+1}{2+n} [/mm] $
gruss leduart

Bezug
                
Bezug
Beschränktheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:03 Sa 21.11.2009
Autor: Ayame

Danke für die verbesserung.

Also ich hab für die monotonie der Folge ein mal n und ein mal n+1 so weit zusammengefasst und dannauf den gleichen nenner gebracht und die beiden gleichungen verglichen. Also welche größer ist.

Reicht das für die monotonie ?

Ich weriß immer noch nicht wie ich die beschränktheit zeigen soll.
ist nicht n=1  immer die untere schranke da n [mm] \in \IN [/mm] ist ?Aber wie soll ich eine obere schranke ausrechnen ?

Bsp : [mm] \bruch{1}{1+(-2)^{n}} [/mm]

Da dachte ich mir ob man da nicht nach geraden und ungeraden zahlen unterscheiden könnte.

a) [mm] \bruch{1}{1+(-2)^{2n-1}} [/mm]    und b) [mm] \bruch{1}{1+(-2)^{2n}} [/mm]

Bezug
                        
Bezug
Beschränktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Sa 21.11.2009
Autor: leduart

Hallo
Wenn du das mit dem Vergleichen richtig gemacht hast, also wirklich [mm] a_n Nur weil du bewiesen hast, dass die folge vom ersten Glied an wachsend ist, ist bei n=1 der kleinste Wert.
Du suchst doch nicht ne Schranke für n sondern für deine [mm] a_n [/mm]
wwenn du etwa die Folge [mm] a_n=1+1/n [/mm] hast, ist bei n=1 nicht die untere Schranke.
Bei der gegebenen Folge sieht man aber, dass sie für grosse n beliebig gross wird, der GW ist [mm] \infty [/mm] also hat sie keine obere Schranke.  man beweist das mit : zu jedem  beliebigen S>0  gibt es ein N, so dass alle [mm] a_n [/mm] mit n>N grösser S sind.
Natürlich kannst du die Folge so schreiben, aber was soll das helfen?
Wenn dann solltest du schreiben :
$ [mm] a_{2n-1}=\bruch{1}{1-2)^{2n-1}} [/mm] $    und b) $ [mm] a_{2n}=\bruch{1}{1+(2)^{2n}} [/mm] $
dann kannst du zeigen, dass die eine Teilfolge steigend, die andere Fallend ist, dass also die kleinste obere Schranke bei n=0 (oder wenn ihr mit n=1 anfängt. bei n=2
die kleinste untere Schranke bei n=1 liegt.
Wenn du nur Bschränktheit zeigen willst, dann kannst du einfach zeigen, dass [mm] a_n [/mm] immer >-2 (oder -10) ist und immer kleiner 2 oder 10 oder 100.
Wenn nur nach Beschränktheit gefragt ist, ist egal, welche Schranke du nimmst, die darf dann auch viel zu gross oder zu klein sein. nur wenn nach der kleinsten oberen oder rössten unteren Schranke gefragt ist must du genauer sein.
Gruss leduart.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de