www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Beschränktheit -> Konvergenz
Beschränktheit -> Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränktheit -> Konvergenz: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 01:32 Mi 29.12.2004
Autor: dancingestrella

Hallo,

bevor ich endgültig ich mein warmes Bett verschwinde eine Verständnisfrage:

dazu eine

DEFINITION
Eine Folge reeller Zahlen in einen metrischen Raum (M,d) heißt beschränkt, wenn es ein K [mm] \in [/mm] M gibt, so dass für alle Folgenglieder x,y  gilt:

   d(x,y) < K.


Angenommen ich zeige, dass für eine Folge [mm] (b_{n}, [/mm] n [mm] \in \IN) [/mm] gilt:
[mm] b_n [/mm] - [mm] b_n+1 [/mm] < 0
also wächst [mm] (b_{n}) [/mm] streng monoton.

Da wir uns in [mm] \IR [/mm] befinden könnte man ja eigentlich auch schreiben:
[mm] d(b_{n}, b_{n+1}) [/mm] < 0

Da 0 [mm] \in \IR, [/mm] habe ich auch gleich die Beschränktheit mitgezeigt???
Das würde ja suggerieren, dass immer wenn Folgen streng monoton sind, sie auch konvergieren, oder? Hilfe...
Irgendwas kann da nicht stimmen! Wo liegt mein Denkfehler?

gute nacht,
dancingestrella

        
Bezug
Beschränktheit -> Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Mi 29.12.2004
Autor: Clemens

Hallo!

> DEFINITION
>  Eine Folge reeller Zahlen in einen metrischen Raum (M,d)
> heißt beschränkt, wenn es ein K [mm]\in[/mm] M gibt, so dass für
> alle Folgenglieder x,y  gilt:
>  
> d(x,y) < K.
>  
>
> Angenommen ich zeige, dass für eine Folge [mm](b_{n},[/mm] n [mm]\in \IN)[/mm]
> gilt:
>  [mm]b_n[/mm] - [mm]b_n+1[/mm] < 0
>  also wächst [mm](b_{n})[/mm] streng monoton.

Richtig

> Da wir uns in [mm]\IR[/mm] befinden könnte man ja eigentlich auch
> schreiben:
>  [mm]d(b_{n}, b_{n+1})[/mm] < 0

Wenn du auf R eine Metrik d definierst, dann muss sie natürlich auch die Eigenschaften einer Metrik haben, z. b. positive Definitheit, d. h. für alle x, y [mm] \in \IR [/mm] gilt d(x,y) [mm] \ge [/mm] 0 und d(x,y) = 0 [mm] \gdw [/mm] x = y.

Wenn du mit d die gewöhnliche Abstandsfunktion, also d(x,y) := |x - y| und |x - y| = x - y, wenn x > y und |x - y| = y - x sonst, bezeichnest, dann musst du ja aus [mm] b_{n} [/mm] - [mm] b_{n+1} [/mm] < 0 folgern, dass [mm] b_{n} \not= b_{n+1} [/mm] und damit [mm] d(b_{n},b_{n+1}) [/mm] > 0 für alle n.

> Da 0 [mm]\in \IR,[/mm] habe ich auch gleich die Beschränktheit
> mitgezeigt???

Nein, denn erstens hast du ja oben einen Fehler gemacht, aber zweitens hast du ja nur über die Abstände benachbarter Folgenglieder gesprochen und nicht über den Abstand zwischen zwei beliebigen Folgengliedern. Ein Beispiel zur Erhellung:
[mm] b_{n} [/mm] = n.
Es gilt offensichtlich [mm] d(b_{n},b_{n+1}) [/mm] = 1 < 2. Dann ist die 2 aber kein K, wie in der Definition von Beschränktheit gefordert, denn [mm] d(b_{4},b_{1}) [/mm] > 2. Man muss jedes Folgenglied mit jedem vergleichen und nicht nur benachbarte. Diese Folge ist zum Beispiel unbeschränkt. Denn ein gedachtes K wird sofort durch [mm] d(b_{1},b_{K + 2}) [/mm] = K + 1 > K widerlegt.

Gruß Clemens


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de